1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/* ---------------------------------------------------------------------
*
* -- PBLAS routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"
#ifdef __STDC__
void pzher_( F_CHAR_T UPLO, Int * N, double * ALPHA,
double * X, Int * IX, Int * JX, Int * DESCX, Int * INCX,
double * A, Int * IA, Int * JA, Int * DESCA )
#else
void pzher_( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )
/*
* .. Scalar Arguments ..
*/
F_CHAR_T UPLO;
Int * IA, * INCX, * IX, * JA, * JX, * N;
double * ALPHA;
/*
* .. Array Arguments ..
*/
Int * DESCA, * DESCX;
double * A, * X;
#endif
{
/*
* Purpose
* =======
*
* PZHER performs the Hermitian rank 1 operation
*
* sub( A ) := alpha*sub( X )*conjg( sub( X )' ) + sub( A ),
*
* where
*
* sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), and,
*
* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
*
* Alpha is a real scalar, sub( X ) is an n element subvector and
* sub( A ) is an n by n Hermitian submatrix.
*
* Notes
* =====
*
* A description vector is associated with each 2D block-cyclicly dis-
* tributed matrix. This vector stores the information required to
* establish the mapping between a matrix entry and its corresponding
* process and memory location.
*
* In the following comments, the character _ should be read as
* "of the distributed matrix". Let A be a generic term for any 2D
* block cyclicly distributed matrix. Its description vector is DESC_A:
*
* NOTATION STORED IN EXPLANATION
* ---------------- --------------- ------------------------------------
* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
* the NPROW x NPCOL BLACS process grid
* A is distributed over. The context
* itself is global, but the handle
* (the integer value) may vary.
* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
* ted matrix A, M_A >= 0.
* N_A (global) DESCA[ N_ ] The number of columns in the distri-
* buted matrix A, N_A >= 0.
* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
* block of the matrix A, IMB_A > 0.
* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
* left block of the matrix A,
* INB_A > 0.
* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
* bute the last M_A-IMB_A rows of A,
* MB_A > 0.
* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
* bute the last N_A-INB_A columns of
* A, NB_A > 0.
* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
* row of the matrix A is distributed,
* NPROW > RSRC_A >= 0.
* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
* first column of A is distributed.
* NPCOL > CSRC_A >= 0.
* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
* array storing the local blocks of
* the distributed matrix A,
* IF( Lc( 1, N_A ) > 0 )
* LLD_A >= MAX( 1, Lr( 1, M_A ) )
* ELSE
* LLD_A >= 1.
*
* Let K be the number of rows of a matrix A starting at the global in-
* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
* receive if these K rows were distributed over NPROW processes. If K
* is the number of columns of a matrix A starting at the global index
* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
* these K columns were distributed over NPCOL processes.
*
* The values of Lr() and Lc() may be determined via a call to the func-
* tion PB_Cnumroc:
* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER*1
* On entry, UPLO specifies whether the local pieces of
* the array A containing the upper or lower triangular part
* of the Hermitian submatrix sub( A ) are to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the local pieces corresponding to
* the upper triangular part of the
* Hermitian submatrix sub( A ) are to be
* referenced,
*
* UPLO = 'L' or 'l' Only the local pieces corresponding to
* the lower triangular part of the
* Hermitian submatrix sub( A ) are to be
* referenced.
*
* N (global input) INTEGER
* On entry, N specifies the order of the submatrix sub( A ).
* N must be at least zero.
*
* ALPHA (global input) DOUBLE PRECISION
* On entry, ALPHA specifies the scalar alpha. When ALPHA is
* supplied as zero then the local entries of the array X
* corresponding to the entries of the subvector sub( X ) need
* not be set on input.
*
* X (local input) COMPLEX*16 array
* On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
* is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and
* MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least
* Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise.
* Before entry, this array contains the local entries of the
* matrix X.
*
* IX (global input) INTEGER
* On entry, IX specifies X's global row index, which points to
* the beginning of the submatrix sub( X ).
*
* JX (global input) INTEGER
* On entry, JX specifies X's global column index, which points
* to the beginning of the submatrix sub( X ).
*
* DESCX (global and local input) INTEGER array
* On entry, DESCX is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix X.
*
* INCX (global input) INTEGER
* On entry, INCX specifies the global increment for the
* elements of X. Only two values of INCX are supported in
* this version, namely 1 and M_X. INCX must not be zero.
*
* A (local input/local output) COMPLEX*16 array
* On entry, A is an array of dimension (LLD_A, Ka), where Ka is
* at least Lc( 1, JA+N-1 ). Before entry, this array contains
* the local entries of the matrix A.
* Before entry with UPLO = 'U' or 'u', this array contains
* the local entries corresponding to the upper triangular part
* of the Hermitian submatrix sub( A ), and the local entries
* corresponding to the strictly lower triangular of sub( A )
* are not referenced. On exit, the upper triangular part of
* sub( A ) is overwritten by the upper triangular part of the
* updated submatrix.
* Before entry with UPLO = 'L' or 'l', this array contains
* the local entries corresponding to the lower triangular part
* of the Hermitian submatrix sub( A ), and the local entries
* corresponding to the strictly upper triangular of sub( A )
* are not referenced. On exit, the lower triangular part of
* sub( A ) is overwritten by the lower triangular part of the
* updated submatrix.
* Note that the imaginary parts of the local entries corres-
* ponding to the diagonal elements of sub( A ) need not be
* set, they are assumed to be zero, and on exit they are set
* to zero.
*
* IA (global input) INTEGER
* On entry, IA specifies A's global row index, which points to
* the beginning of the submatrix sub( A ).
*
* JA (global input) INTEGER
* On entry, JA specifies A's global column index, which points
* to the beginning of the submatrix sub( A ).
*
* DESCA (global and local input) INTEGER array
* On entry, DESCA is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix A.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
char UploA;
Int Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb,
Amp, Amp0, Anb, Anq, Anq0, Arow, XCfr, XCld, XRfr, XRld,
Xi, Xj, ctxt, info, ione=1, k, kb, ktmp, mycol, myrow, nb,
npcol, nprow, size, upper;
cmplx16 Calpha;
PBTYP_T * type;
/*
* .. Local Arrays ..
*/
Int Ad[DLEN_], Ad0[DLEN_], XCd0[DLEN_], XRd0[DLEN_], Xd[DLEN_];
char * Aptr = NULL, * XC = NULL, * XR = NULL;
/* ..
* .. Executable Statements ..
*
*/
upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
#ifndef NO_ARGCHK
/*
* Test the input parameters
*/
Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) )
{
if( ( !upper ) && ( UploA != CLOWER ) )
{
PB_Cwarn( ctxt, __LINE__, "PZHER", "Illegal UPLO = %c\n", UploA );
info = -1;
}
PB_Cchkvec( ctxt, "PZHER", "X", *N, 2, Xi, Xj, Xd, *INCX, 7, &info );
PB_Cchkmat( ctxt, "PZHER", "A", *N, 2, *N, 2, Ai, Aj, Ad, 12, &info );
}
if( info ) { PB_Cabort( ctxt, "PZHER", info ); return; }
#endif
/*
* Quick return if possible
*/
if( ( *N == 0 ) || ( ALPHA[REAL_PART] == ZERO ) )
return;
/*
* Retrieve process grid information
*/
#ifdef NO_ARGCHK
Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
#endif
/*
* Get type structure
*/
type = PB_Cztypeset();
/*
* Compute descriptor Ad0 for sub( A )
*/
PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj,
&Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 );
/*
* Replicate sub( X ) in process rows (XR) and process columns (XC) spanned by
* sub( A )
*/
if( *INCX == Xd[M_] )
{
PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, ((char *) X), Xi, Xj,
Xd, ROW, &XR, XRd0, &XRfr );
PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, XR, 0, 0,
XRd0, ROW, &XC, XCd0, &XCfr );
}
else
{
PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) X), Xi, Xj,
Xd, COLUMN, &XC, XCd0, &XCfr );
PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, XC, 0, 0,
XCd0, COLUMN, &XR, XRd0, &XRfr );
}
/*
* Local rank-1 update if I own some data
*/
Amp = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
Anq = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
if( ( Amp > 0 ) && ( Anq > 0 ) )
{
size = type->size;
Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
/*
* Computational partitioning size is computed as the product of the logical
* value returned by pilaenv_ and 2 * lcm( nprow, npcol ).
*/
nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &type->type ) ) *
PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) );
XCld = XCd0[LLD_]; XRld = XRd0[LLD_];
Calpha[REAL_PART] = ALPHA[REAL_PART];
Calpha[IMAG_PART] = ZERO;
if( upper )
{
for( k = 0; k < *N; k += nb )
{
kb = *N - k; kb = MIN( kb, nb );
Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
if( Akp > 0 && Anq0 > 0 )
zgerc_( &Akp, &Anq0, ((char *) Calpha), XC, &ione,
Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, 0,
Akq, Ald, size ), &Ald );
PB_Cpsyr( type, UPPER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0,
XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld,
Aptr, k, k, Ad0, PB_Ctzher );
}
}
else
{
for( k = 0; k < *N; k += nb )
{
kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) );
Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
PB_Cpsyr( type, LOWER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0,
XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld,
Aptr, k, k, Ad0, PB_Ctzher );
Akp = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow );
Amp0 = Amp - Akp;
Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
if( Amp0 > 0 && Anq0 > 0 )
zgerc_( &Amp0, &Anq0, ((char *) Calpha), Mptr( XC, Akp,
0, XCld, size ), &ione, Mptr( XR, 0, Akq, XRld, size ),
&XRld, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald );
}
}
}
if( XRfr ) free( XR );
if( XCfr ) free( XC );
/*
* End of PZHER
*/
}
|