File: pztranc_.c

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (249 lines) | stat: -rw-r--r-- 9,694 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* ---------------------------------------------------------------------
*
*  -- PBLAS routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"

#ifdef __STDC__
void pztranc_( Int * M, Int * N,
               double * ALPHA,
               double * A, Int * IA, Int * JA, Int * DESCA,
               double * BETA,
               double * C, Int * IC, Int * JC, Int * DESCC )
#else
void pztranc_( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )
/*
*  .. Scalar Arguments ..
*/
   Int            * IA, * IC, * JA, * JC, * M, * N;
   double         * ALPHA, * BETA;
/*
*  .. Array Arguments ..
*/
   Int            * DESCA, * DESCC;
   double         * A, * C;
#endif
{
/*
*  Purpose
*  =======
*
*  PZTRANC  transposes a matrix
*
*     sub( C ) := beta*sub( C ) + alpha*op( sub( A ) )
*
*  where
*
*     sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1),
*
*     sub( A ) denotes A(IA:IA+N-1,JA:JA+M-1), and,
*
*     op( X ) = conjg( X )'.
*
*  Thus, op( sub( A ) ) denotes conjg( A(IA:IA+N-1,JA:JA+M-1)' ).
*
*  Beta is a scalar, sub( C ) is an m by n submatrix, and sub( A ) is an
*  n by m submatrix.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          On entry,  M  specifies the number of rows of  the  submatrix
*          sub( C ) and the number of columns of the submatrix sub( A ).
*          M  must be at least zero.
*
*  N       (global input) INTEGER
*          On entry, N  specifies the number of columns of the submatrix
*          sub( C ) and the number of rows of the submatrix sub( A ).  N
*          must be at least zero.
*
*  ALPHA   (global input) COMPLEX*16
*          On entry, ALPHA specifies the scalar alpha.   When  ALPHA  is
*          supplied  as  zero  then  the  local entries of  the array  A
*          corresponding to the entries of the submatrix  sub( A )  need
*          not be set on input.
*
*  A       (local input) COMPLEX*16 array
*          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
*          at least Lc( 1, JA+M-1 ).  Before  entry, this array contains
*          the local entries of the matrix A.
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  BETA    (global input) COMPLEX*16
*          On entry,  BETA  specifies the scalar  beta.   When  BETA  is
*          supplied  as  zero  then  the  local entries of  the array  C
*          corresponding to the entries of the submatrix  sub( C )  need
*          not be set on input.
*
*  C       (local input/local output) COMPLEX*16 array
*          On entry, C is an array of dimension (LLD_C, Kc), where Kc is
*          at least Lc( 1, JC+N-1 ).  Before  entry, this array contains
*          the local entries of the matrix C.
*          On exit, the entries of this array corresponding to the local
*          entries of the submatrix  sub( C )  are  overwritten  by  the
*          local entries of the m by n updated submatrix.
*
*  IC      (global input) INTEGER
*          On entry, IC  specifies C's global row index, which points to
*          the beginning of the submatrix sub( C ).
*
*  JC      (global input) INTEGER
*          On entry, JC  specifies C's global column index, which points
*          to the beginning of the submatrix sub( C ).
*
*  DESCC   (global and local input) INTEGER array
*          On entry, DESCC  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix C.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   Int            Ai, Aj, Ci, Cj, ctxt, info, mycol, myrow, npcol, nprow;
/*
*  .. Local Arrays ..
*/
   Int            Ad[DLEN_], Cd[DLEN_];
/* ..
*  .. Executable Statements ..
*
*/
   PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
   PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
#ifndef NO_ARGCHK
/*
*  Test the input parameters
*/
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
   if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) )
   {
      PB_Cchkmat( ctxt, "PZTRANC", "A", *N, 2, *M, 1, Ai, Aj, Ad,  7, &info );
      PB_Cchkmat( ctxt, "PZTRANC", "C", *M, 1, *N, 2, Ci, Cj, Cd, 12, &info );
   }
   if( info ) { PB_Cabort( ctxt, "PZTRANC", info ); return; }
#endif
/*
*  Quick return if possible
*/
   if( ( *M == 0 ) || ( *N == 0 ) ||
       ( ( ALPHA[REAL_PART] == ZERO && ALPHA[IMAG_PART] == ZERO ) &&
         ( BETA [REAL_PART] ==  ONE && BETA [IMAG_PART] == ZERO ) ) )
      return;
/*
*  And when alpha is zero
*/
   if( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) )
   {
      if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
      {
         PB_Cplapad( PB_Cztypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA),
                     ((char *)BETA), ((char *) C), Ci, Cj, Cd );
      }
      else
      {
         PB_Cplascal( PB_Cztypeset(), ALL, NOCONJG, *M, *N, ((char *)BETA),
                      ((char * )C), Ci, Cj, Cd );
      }
      return;
   }
/*
*  Start the operations
*/
   PB_Cptran( PB_Cztypeset(), CONJG,   *M, *N, ((char *) ALPHA),
              ((char *) A), Ai, Aj, Ad, ((char *)  BETA), ((char *) C),
              Ci, Cj, Cd );
/*
*  End of PZTRANC
*/
}