1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
SUBROUTINE CPTTRSV( UPLO, TRANS, N, NRHS, D, E, B, LDB,
$ INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
* Written by Andrew J. Cleary, University of Tennessee.
* November, 1996.
* Modified from CPTTRS:
* -- LAPACK routine (preliminary version) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
*
* .. Scalar Arguments ..
CHARACTER UPLO, TRANS
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX B( LDB, * ), E( * )
* ..
*
* Purpose
* =======
*
* CPTTRSV solves one of the triangular systems
* L * X = B, or L**H * X = B,
* U * X = B, or U**H * X = B,
* where L or U is the Cholesky factor of a Hermitian positive
* definite tridiagonal matrix A such that
* A = U**H*D*U or A = L*D*L**H (computed by CPTTRF).
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the superdiagonal or the subdiagonal
* of the tridiagonal matrix A is stored and the form of the
* factorization:
* = 'U': E is the superdiagonal of U, and A = U'*D*U;
* = 'L': E is the subdiagonal of L, and A = L*D*L'.
* (The two forms are equivalent if A is real.)
*
* TRANS (input) CHARACTER
* Specifies the form of the system of equations:
* = 'N': L * X = B (No transpose)
* = 'N': L * X = B (No transpose)
* = 'C': U**H * X = B (Conjugate transpose)
* = 'C': L**H * X = B (Conjugate transpose)
*
* N (input) INTEGER
* The order of the tridiagonal matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D from the
* factorization computed by CPTTRF.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) off-diagonal elements of the unit bidiagonal
* factor U or L from the factorization computed by CPTTRF
* (see UPLO).
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL NOTRAN, UPPER
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPTTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
IF( .NOT.NOTRAN ) THEN
*
DO 30 J = 1, NRHS
*
* Solve U**T (or H) * x = b.
*
DO 10 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
10 CONTINUE
30 CONTINUE
*
ELSE
*
DO 35 J = 1, NRHS
*
* Solve U * x = b.
*
DO 20 I = N - 1, 1, -1
B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
20 CONTINUE
35 CONTINUE
ENDIF
*
ELSE
*
IF( NOTRAN ) THEN
*
DO 60 J = 1, NRHS
*
* Solve L * x = b.
*
DO 40 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
40 CONTINUE
60 CONTINUE
*
ELSE
*
DO 65 J = 1, NRHS
*
* Solve L**H * x = b.
*
DO 50 I = N - 1, 1, -1
B( I, J ) = B( I, J ) -
$ B( I+1, J )*CONJG( E( I ) )
50 CONTINUE
65 CONTINUE
ENDIF
*
END IF
*
RETURN
*
* End of CPTTRS
*
END
|