File: cpttrsv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (180 lines) | stat: -rw-r--r-- 4,874 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      SUBROUTINE CPTTRSV( UPLO, TRANS, N, NRHS, D, E, B, LDB,
     $                        INFO )
*
*  -- ScaLAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
*     Written by Andrew J. Cleary, University of Tennessee.
*     November, 1996.
*     Modified from CPTTRS:
*  -- LAPACK routine (preliminary version) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO, TRANS
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            B( LDB, * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  CPTTRSV solves one of the triangular systems
*     L * X = B, or  L**H * X = B,
*     U * X = B, or  U**H * X = B,
*  where L or U is the Cholesky factor of a Hermitian positive
*  definite tridiagonal matrix A such that
*  A = U**H*D*U or A = L*D*L**H (computed by CPTTRF).
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the superdiagonal or the subdiagonal
*          of the tridiagonal matrix A is stored and the form of the
*          factorization:
*          = 'U':  E is the superdiagonal of U, and A = U'*D*U;
*          = 'L':  E is the subdiagonal of L, and A = L*D*L'.
*          (The two forms are equivalent if A is real.)
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the system of equations:
*          = 'N':  L * X = B     (No transpose)
*          = 'N':  L * X = B     (No transpose)
*          = 'C':  U**H * X = B  (Conjugate transpose)
*          = 'C':  L**H * X = B  (Conjugate transpose)
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from the
*          factorization computed by CPTTRF.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) off-diagonal elements of the unit bidiagonal
*          factor U or L from the factorization computed by CPTTRF
*          (see UPLO).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            NOTRAN, UPPER
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPTTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
      IF( .NOT.NOTRAN ) THEN
*
         DO 30 J = 1, NRHS
*
*           Solve U**T (or H) * x = b.
*
            DO 10 I = 2, N
               B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
   10       CONTINUE
   30    CONTINUE
*
      ELSE
*
         DO 35 J = 1, NRHS
*
*           Solve U * x = b.
*
            DO 20 I = N - 1, 1, -1
               B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
   20       CONTINUE
   35    CONTINUE
      ENDIF
*
      ELSE
*
      IF( NOTRAN ) THEN
*
         DO 60 J = 1, NRHS
*
*           Solve L * x = b.
*
            DO 40 I = 2, N
               B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
   40       CONTINUE
   60    CONTINUE
*
      ELSE
*
         DO 65 J = 1, NRHS
*
*           Solve L**H * x = b.
*
            DO 50 I = N - 1, 1, -1
               B( I, J ) = B( I, J ) -
     $                     B( I+1, J )*CONJG( E( I ) )
   50       CONTINUE
   65    CONTINUE
      ENDIF
*
      END IF
*
      RETURN
*
*     End of CPTTRS
*
      END