File: ddbtrf.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (339 lines) | stat: -rw-r--r-- 10,824 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
      SUBROUTINE DDBTRF( M, N, KL, KU, AB, LDAB, INFO )
*
*  -- ScaLAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
*     Written by Andrew J. Cleary, University of Tennessee.
*     August, 1996.
*     Modified from DGBTRF:
*  -- LAPACK routine (preliminary version) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     August 6, 1991
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KL, KU, LDAB, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  Ddbtrf computes an LU factorization of a real m-by-n band matrix A
*  without using partial pivoting or row interchanges.
*
*  This is the blocked version of the algorithm, calling Level 3 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  AB      (input/output) REAL array, dimension (LDAB,N)
*          On entry, the matrix A in band storage, in rows KL+1 to
*          2*KL+KU+1; rows 1 to KL of the array need not be set.
*          The j-th column of A is stored in the j-th column of the
*          array AB as follows:
*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
*
*          On exit, details of the factorization: U is stored as an
*          upper triangular band matrix with KL+KU superdiagonals in
*          rows 1 to KL+KU+1, and the multipliers used during the
*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
*          See below for further details.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
*               has been completed, but the factor U is exactly
*               singular, and division by zero will occur if it is used
*               to solve a system of equations.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  M = N = 6, KL = 2, KU = 1:
*
*  On entry:                       On exit:
*
*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
*
*  Array elements marked * are not used by the routine.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0 )
      PARAMETER          ( ZERO = 0.0D+0 )
      INTEGER            NBMAX, LDWORK
      PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I2, I3, II, J, J2, J3, JB, JJ, JM, JP,
     $                   JU, KM, KV, NB, NW
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION     WORK13( LDWORK, NBMAX ),
     $                   WORK31( LDWORK, NBMAX )
*     ..
*     .. External Functions ..
      INTEGER            ILAENV, ISAMAX
      EXTERNAL           ILAENV, ISAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DDBTF2, DGEMM, DGER, DSCAL,
     $                   DSWAP, DTRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     KV is the number of superdiagonals in the factor U
*
      KV = KU
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.MIN( MIN( KL+KV+1,M ),N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DDBTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $     RETURN
*
*     Determine the block size for this environment
*
      NB = ILAENV( 1, 'DDBTRF', ' ', M, N, KL, KU )
*
*     The block size must not exceed the limit set by the size of the
*     local arrays WORK13 and WORK31.
*
      NB = MIN( NB, NBMAX )
*
      IF( NB.LE.1 .OR. NB.GT.KL ) THEN
*
*        Use unblocked code
*
         CALL DDBTF2( M, N, KL, KU, AB, LDAB, INFO )
      ELSE
*
*        Use blocked code
*
*        Zero the superdiagonal elements of the work array WORK13
*
         DO 20 J = 1, NB
            DO 10 I = 1, J - 1
               WORK13( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
*
*        Zero the subdiagonal elements of the work array WORK31
*
         DO 40 J = 1, NB
            DO 30 I = J + 1, NB
               WORK31( I, J ) = ZERO
   30       CONTINUE
   40    CONTINUE
*
*        JU is the index of the last column affected by the current
*        stage of the factorization
*
         JU = 1
*
         DO 180 J = 1, MIN( M, N ), NB
            JB = MIN( NB, MIN( M, N )-J+1 )
*
*           The active part of the matrix is partitioned
*
*              A11   A12   A13
*              A21   A22   A23
*              A31   A32   A33
*
*           Here A11, A21 and A31 denote the current block of JB columns
*           which is about to be factorized. The number of rows in the
*           partitioning are JB, I2, I3 respectively, and the numbers
*           of columns are JB, J2, J3. The superdiagonal elements of A13
*           and the subdiagonal elements of A31 lie outside the band.
*
            I2 = MIN( KL-JB, M-J-JB+1 )
            I3 = MIN( JB, M-J-KL+1 )
*
*           J2 and J3 are computed after JU has been updated.
*
*           Factorize the current block of JB columns
*
            DO 80 JJ = J, J + JB - 1
*
*              Find pivot and test for singularity. KM is the number of
*              subdiagonal elements in the current column.
*
               KM = MIN( KL, M-JJ )
               JP = 1
               IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
                  JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
*
*                 Compute multipliers
*
                  CALL DSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
     $                 1 )
*
*                 Update trailing submatrix within the band and within
*                 the current block. JM is the index of the last column
*                 which needs to be updated.
*
                  JM = MIN( JU, J+JB-1 )
                  IF( JM.GT.JJ ) THEN
                     CALL DGER( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
     $                          AB( KV, JJ+1 ), LDAB-1,
     $                          AB( KV+1, JJ+1 ), LDAB-1 )
                  END IF
               END IF
*
*              Copy current column of A31 into the work array WORK31
*
               NW = MIN( JJ-J+1, I3 )
               IF( NW.GT.0 )
     $            CALL DCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
     $                        WORK31( 1, JJ-J+1 ), 1 )
   80       CONTINUE
            IF( J+JB.LE.N ) THEN
*
*              Apply the row interchanges to the other blocks.
*
               J2 = MIN( JU-J+1, KV ) - JB
               J3 = MAX( 0, JU-J-KV+1 )
*
*              Update the relevant part of the trailing submatrix
*
               IF( J2.GT.0 ) THEN
*
*                 Update A12
*
                  CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
     $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
     $                        AB( KV+1-JB, J+JB ), LDAB-1 )
*
                  IF( I2.GT.0 ) THEN
*
*                    Update A22
*
                     CALL DGEMM( 'No transpose', 'No transpose', I2, J2,
     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
     $                           AB( KV+1, J+JB ), LDAB-1 )
                  END IF
*
                  IF( I3.GT.0 ) THEN
*
*                    Update A32
*
                     CALL DGEMM( 'No transpose', 'No transpose', I3, J2,
     $                           JB, -ONE, WORK31, LDWORK,
     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
     $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
                  END IF
               END IF
*
               IF( J3.GT.0 ) THEN
*
*                 Copy the lower triangle of A13 into the work array
*                 WORK13
*
                  DO 130 JJ = 1, J3
                     DO 120 II = JJ, JB
                        WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
  120                CONTINUE
  130             CONTINUE
*
*                 Update A13 in the work array
*
                  CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
     $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
     $                        WORK13, LDWORK )
*
                  IF( I2.GT.0 ) THEN
*
*                    Update A23
*
                     CALL DGEMM( 'No transpose', 'No transpose', I2, J3,
     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
     $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
     $                           LDAB-1 )
                  END IF
*
                  IF( I3.GT.0 ) THEN
*
*                    Update A33
*
                     CALL DGEMM( 'No transpose', 'No transpose', I3, J3,
     $                         JB, -ONE, WORK31, LDWORK, WORK13,
     $                         LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
                  END IF
*
*                 Copy the lower triangle of A13 back into place
*
                  DO 150 JJ = 1, J3
                     DO 140 II = JJ, JB
                        AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
  140                CONTINUE
  150             CONTINUE
               END IF
            ELSE
            END IF
*
*           copy the upper triangle of A31 back into place
*
            DO 170 JJ = J + JB - 1, J, -1
*
*              Copy the current column of A31 back into place
*
               NW = MIN( I3, JJ-J+1 )
               IF( NW.GT.0 )
     $            CALL DCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
     $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
  170       CONTINUE
  180    CONTINUE
      END IF
*
      RETURN
*
*     End of DDBTRF
*
      END