1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
SUBROUTINE DDBTRF( M, N, KL, KU, AB, LDAB, INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*
* Written by Andrew J. Cleary, University of Tennessee.
* August, 1996.
* Modified from DGBTRF:
* -- LAPACK routine (preliminary version) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* August 6, 1991
*
* .. Scalar Arguments ..
INTEGER INFO, KL, KU, LDAB, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AB( LDAB, * )
* ..
*
* Purpose
* =======
*
* Ddbtrf computes an LU factorization of a real m-by-n band matrix A
* without using partial pivoting or row interchanges.
*
* This is the blocked version of the algorithm, calling Level 3 BLAS.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* KL (input) INTEGER
* The number of subdiagonals within the band of A. KL >= 0.
*
* KU (input) INTEGER
* The number of superdiagonals within the band of A. KU >= 0.
*
* AB (input/output) REAL array, dimension (LDAB,N)
* On entry, the matrix A in band storage, in rows KL+1 to
* 2*KL+KU+1; rows 1 to KL of the array need not be set.
* The j-th column of A is stored in the j-th column of the
* array AB as follows:
* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
*
* On exit, details of the factorization: U is stored as an
* upper triangular band matrix with KL+KU superdiagonals in
* rows 1 to KL+KU+1, and the multipliers used during the
* factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
* See below for further details.
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and division by zero will occur if it is used
* to solve a system of equations.
*
* Further Details
* ===============
*
* The band storage scheme is illustrated by the following example, when
* M = N = 6, KL = 2, KU = 1:
*
* On entry: On exit:
*
* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
* a31 a42 a53 a64 * * m31 m42 m53 m64 * *
*
* Array elements marked * are not used by the routine.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0 )
PARAMETER ( ZERO = 0.0D+0 )
INTEGER NBMAX, LDWORK
PARAMETER ( NBMAX = 64, LDWORK = NBMAX+1 )
* ..
* .. Local Scalars ..
INTEGER I, I2, I3, II, J, J2, J3, JB, JJ, JM, JP,
$ JU, KM, KV, NB, NW
* ..
* .. Local Arrays ..
DOUBLE PRECISION WORK13( LDWORK, NBMAX ),
$ WORK31( LDWORK, NBMAX )
* ..
* .. External Functions ..
INTEGER ILAENV, ISAMAX
EXTERNAL ILAENV, ISAMAX
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DDBTF2, DGEMM, DGER, DSCAL,
$ DSWAP, DTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* KV is the number of superdiagonals in the factor U
*
KV = KU
*
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KL.LT.0 ) THEN
INFO = -3
ELSE IF( KU.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.MIN( MIN( KL+KV+1,M ),N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DDBTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Determine the block size for this environment
*
NB = ILAENV( 1, 'DDBTRF', ' ', M, N, KL, KU )
*
* The block size must not exceed the limit set by the size of the
* local arrays WORK13 and WORK31.
*
NB = MIN( NB, NBMAX )
*
IF( NB.LE.1 .OR. NB.GT.KL ) THEN
*
* Use unblocked code
*
CALL DDBTF2( M, N, KL, KU, AB, LDAB, INFO )
ELSE
*
* Use blocked code
*
* Zero the superdiagonal elements of the work array WORK13
*
DO 20 J = 1, NB
DO 10 I = 1, J - 1
WORK13( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
* Zero the subdiagonal elements of the work array WORK31
*
DO 40 J = 1, NB
DO 30 I = J + 1, NB
WORK31( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* JU is the index of the last column affected by the current
* stage of the factorization
*
JU = 1
*
DO 180 J = 1, MIN( M, N ), NB
JB = MIN( NB, MIN( M, N )-J+1 )
*
* The active part of the matrix is partitioned
*
* A11 A12 A13
* A21 A22 A23
* A31 A32 A33
*
* Here A11, A21 and A31 denote the current block of JB columns
* which is about to be factorized. The number of rows in the
* partitioning are JB, I2, I3 respectively, and the numbers
* of columns are JB, J2, J3. The superdiagonal elements of A13
* and the subdiagonal elements of A31 lie outside the band.
*
I2 = MIN( KL-JB, M-J-JB+1 )
I3 = MIN( JB, M-J-KL+1 )
*
* J2 and J3 are computed after JU has been updated.
*
* Factorize the current block of JB columns
*
DO 80 JJ = J, J + JB - 1
*
* Find pivot and test for singularity. KM is the number of
* subdiagonal elements in the current column.
*
KM = MIN( KL, M-JJ )
JP = 1
IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
*
* Compute multipliers
*
CALL DSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
$ 1 )
*
* Update trailing submatrix within the band and within
* the current block. JM is the index of the last column
* which needs to be updated.
*
JM = MIN( JU, J+JB-1 )
IF( JM.GT.JJ ) THEN
CALL DGER( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
$ AB( KV, JJ+1 ), LDAB-1,
$ AB( KV+1, JJ+1 ), LDAB-1 )
END IF
END IF
*
* Copy current column of A31 into the work array WORK31
*
NW = MIN( JJ-J+1, I3 )
IF( NW.GT.0 )
$ CALL DCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
$ WORK31( 1, JJ-J+1 ), 1 )
80 CONTINUE
IF( J+JB.LE.N ) THEN
*
* Apply the row interchanges to the other blocks.
*
J2 = MIN( JU-J+1, KV ) - JB
J3 = MAX( 0, JU-J-KV+1 )
*
* Update the relevant part of the trailing submatrix
*
IF( J2.GT.0 ) THEN
*
* Update A12
*
CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
$ JB, J2, ONE, AB( KV+1, J ), LDAB-1,
$ AB( KV+1-JB, J+JB ), LDAB-1 )
*
IF( I2.GT.0 ) THEN
*
* Update A22
*
CALL DGEMM( 'No transpose', 'No transpose', I2, J2,
$ JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
$ AB( KV+1-JB, J+JB ), LDAB-1, ONE,
$ AB( KV+1, J+JB ), LDAB-1 )
END IF
*
IF( I3.GT.0 ) THEN
*
* Update A32
*
CALL DGEMM( 'No transpose', 'No transpose', I3, J2,
$ JB, -ONE, WORK31, LDWORK,
$ AB( KV+1-JB, J+JB ), LDAB-1, ONE,
$ AB( KV+KL+1-JB, J+JB ), LDAB-1 )
END IF
END IF
*
IF( J3.GT.0 ) THEN
*
* Copy the lower triangle of A13 into the work array
* WORK13
*
DO 130 JJ = 1, J3
DO 120 II = JJ, JB
WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
120 CONTINUE
130 CONTINUE
*
* Update A13 in the work array
*
CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
$ JB, J3, ONE, AB( KV+1, J ), LDAB-1,
$ WORK13, LDWORK )
*
IF( I2.GT.0 ) THEN
*
* Update A23
*
CALL DGEMM( 'No transpose', 'No transpose', I2, J3,
$ JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
$ WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
$ LDAB-1 )
END IF
*
IF( I3.GT.0 ) THEN
*
* Update A33
*
CALL DGEMM( 'No transpose', 'No transpose', I3, J3,
$ JB, -ONE, WORK31, LDWORK, WORK13,
$ LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
END IF
*
* Copy the lower triangle of A13 back into place
*
DO 150 JJ = 1, J3
DO 140 II = JJ, JB
AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
140 CONTINUE
150 CONTINUE
END IF
ELSE
END IF
*
* copy the upper triangle of A31 back into place
*
DO 170 JJ = J + JB - 1, J, -1
*
* Copy the current column of A31 back into place
*
NW = MIN( I3, JJ-J+1 )
IF( NW.GT.0 )
$ CALL DCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
$ AB( KV+KL+1-JJ+J, JJ ), 1 )
170 CONTINUE
180 CONTINUE
END IF
*
RETURN
*
* End of DDBTRF
*
END
|