1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
SUBROUTINE DLARRE2A( RANGE, N, VL, VU, IL, IU, D, E, E2,
$ RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT,
$ M, DOL, DOU, NEEDIL, NEEDIU,
$ W, WERR, WGAP, IBLOCK, INDEXW, GERS,
$ SDIAM, PIVMIN, WORK, IWORK, MINRGP, INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ of Colorado Denver
* July 4, 2010
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER RANGE
INTEGER DOL, DOU, IL, INFO, IU, M, N, NSPLIT,
$ NEEDIL, NEEDIU
DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ),
$ INDEXW( * )
DOUBLE PRECISION D( * ), E( * ), E2( * ), GERS( * ),
$ SDIAM( * ), W( * ),WERR( * ),
$ WGAP( * ), WORK( * )
*
* Purpose
* =======
*
* To find the desired eigenvalues of a given real symmetric
* tridiagonal matrix T, DLARRE2 sets any "small" off-diagonal
* elements to zero, and for each unreduced block T_i, it finds
* (a) a suitable shift at one end of the block's spectrum,
* (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
* (c) eigenvalues of each L_i D_i L_i^T.
*
* NOTE:
* The algorithm obtains a crude picture of all the wanted eigenvalues
* (as selected by RANGE). However, to reduce work and improve scalability,
* only the eigenvalues DOL to DOU are refined. Furthermore, if the matrix
* splits into blocks, RRRs for blocks that do not contain eigenvalues
* from DOL to DOU are skipped.
* The DQDS algorithm (subroutine DLASQ2) is not used, unlike in
* the sequential case. Instead, eigenvalues are computed in parallel to some
* figures using bisection.
*
* Arguments
* =========
*
* RANGE (input) CHARACTER
* = 'A': ("All") all eigenvalues will be found.
* = 'V': ("Value") all eigenvalues in the half-open interval
* (VL, VU] will be found.
* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
* entire matrix) will be found.
*
* N (input) INTEGER
* The order of the matrix. N > 0.
*
* VL (input/output) DOUBLE PRECISION
* VU (input/output) DOUBLE PRECISION
* If RANGE='V', the lower and upper bounds for the eigenvalues.
* Eigenvalues less than or equal to VL, or greater than VU,
* will not be returned. VL < VU.
* If RANGE='I' or ='A', DLARRE2A computes bounds on the desired
* part of the spectrum.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the N diagonal elements of the tridiagonal
* matrix T.
* On exit, the N diagonal elements of the diagonal
* matrices D_i.
*
* E (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the first (N-1) entries contain the subdiagonal
* elements of the tridiagonal matrix T; E(N) need not be set.
* On exit, E contains the subdiagonal elements of the unit
* bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
* 1 <= I <= NSPLIT, contain the base points sigma_i on output.
*
* E2 (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the first (N-1) entries contain the SQUARES of the
* subdiagonal elements of the tridiagonal matrix T;
* E2(N) need not be set.
* On exit, the entries E2( ISPLIT( I ) ),
* 1 <= I <= NSPLIT, have been set to zero
*
* RTOL1 (input) DOUBLE PRECISION
* RTOL2 (input) DOUBLE PRECISION
* Parameters for bisection.
* An interval [LEFT,RIGHT] has converged if
* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*
* SPLTOL (input) DOUBLE PRECISION
* The threshold for splitting.
*
* NSPLIT (output) INTEGER
* The number of blocks T splits into. 1 <= NSPLIT <= N.
*
* ISPLIT (output) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into blocks.
* The first block consists of rows/columns 1 to ISPLIT(1),
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
* etc., and the NSPLIT-th consists of rows/columns
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
*
* M (output) INTEGER
* The total number of eigenvalues (of all L_i D_i L_i^T)
* found.
*
* DOL (input) INTEGER
* DOU (input) INTEGER
* If the user wants to work on only a selected part of the
* representation tree, he can specify an index range DOL:DOU.
* Otherwise, the setting DOL=1, DOU=N should be applied.
* Note that DOL and DOU refer to the order in which the eigenvalues
* are stored in W.
*
* NEEDIL (output) INTEGER
* NEEDIU (output) INTEGER
* The indices of the leftmost and rightmost eigenvalues
* of the root node RRR which are
* needed to accurately compute the relevant part of the
* representation tree.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* The first M elements contain the eigenvalues. The
* eigenvalues of each of the blocks, L_i D_i L_i^T, are
* sorted in ascending order ( DLARRE2A may use the
* remaining N-M elements as workspace).
* Note that immediately after exiting this routine, only
* the eigenvalues from position DOL:DOU in W are
* reliable on this processor
* because the eigenvalue computation is done in parallel.
*
* WERR (output) DOUBLE PRECISION array, dimension (N)
* The error bound on the corresponding eigenvalue in W.
* Note that immediately after exiting this routine, only
* the uncertainties from position DOL:DOU in WERR are
* reliable on this processor
* because the eigenvalue computation is done in parallel.
*
* WGAP (output) DOUBLE PRECISION array, dimension (N)
* The separation from the right neighbor eigenvalue in W.
* The gap is only with respect to the eigenvalues of the same block
* as each block has its own representation tree.
* Exception: at the right end of a block we store the left gap
* Note that immediately after exiting this routine, only
* the gaps from position DOL:DOU in WGAP are
* reliable on this processor
* because the eigenvalue computation is done in parallel.
*
* IBLOCK (output) INTEGER array, dimension (N)
* The indices of the blocks (submatrices) associated with the
* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
* W(i) belongs to the first block from the top, =2 if W(i)
* belongs to the second block, etc.
*
* INDEXW (output) INTEGER array, dimension (N)
* The indices of the eigenvalues within each block (submatrix);
* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
* i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
*
* GERS (output) DOUBLE PRECISION array, dimension (2*N)
* The N Gerschgorin intervals (the i-th Gerschgorin interval
* is (GERS(2*i-1), GERS(2*i)).
*
* PIVMIN (output) DOUBLE PRECISION
* The minimum pivot in the sturm sequence for T.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
* Workspace.
*
* IWORK (workspace) INTEGER array, dimension (5*N)
* Workspace.
*
* MINRGP (input) DOUBLE PRECISION
* The minimum relativ gap threshold to decide whether an eigenvalue
* or a cluster boundary is reached.
*
* INFO (output) INTEGER
* = 0: successful exit
* > 0: A problem occured in DLARRE2A.
* < 0: One of the called subroutines signaled an internal problem.
* Needs inspection of the corresponding parameter IINFO
* for further information.
*
* =-1: Problem in DLARRD2.
* = 2: No base representation could be found in MAXTRY iterations.
* Increasing MAXTRY and recompilation might be a remedy.
* =-3: Problem in DLARRB2 when computing the refined root
* representation
* =-4: Problem in DLARRB2 when preforming bisection on the
* desired part of the spectrum.
* = -9 Problem: M < DOU-DOL+1, that is the code found fewer
* eigenvalues than it was supposed to
*
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
$ MAXGROWTH, ONE, PERT, TWO, ZERO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0,
$ TWO = 2.0D0, FOUR=4.0D0,
$ HNDRD = 100.0D0,
$ PERT = 8.0D0,
$ HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
$ MAXGROWTH = 64.0D0, FUDGE = 2.0D0 )
INTEGER MAXTRY
PARAMETER ( MAXTRY = 6 )
* ..
* .. Local Scalars ..
LOGICAL NOREP, RNDPRT, USEDQD
INTEGER CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
$ IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
$ MYINDL, MYINDU, MYWBEG, MYWEND, WBEGIN, WEND
DOUBLE PRECISION AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
$ EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT,
$ LGPVMN, LGSPDM, RTL, S1, S2, SAFMIN, SGNDEF,
$ SIGMA, SPDIAM, TAU, TMP, TMP1, TMP2
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLARNV, DLARRA, DLARRB2,
$ DLARRC, DLARRD2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
* Dis-/Enable a small random perturbation of the root representation
RNDPRT = .TRUE.
*
* Decode RANGE
*
IF( LSAME( RANGE, 'A' ) ) THEN
IRANGE = 1
ELSE IF( LSAME( RANGE, 'V' ) ) THEN
IRANGE = 2
ELSE IF( LSAME( RANGE, 'I' ) ) THEN
IRANGE = 3
END IF
M = 0
* Get machine constants
SAFMIN = DLAMCH( 'S' )
EPS = DLAMCH( 'P' )
* Set parameters
RTL = SQRT(EPS)
BSRTOL = 1.0D-1
* Treat case of 1x1 matrix for quick return
IF( N.EQ.1 ) THEN
IF( (IRANGE.EQ.1).OR.
$ ((IRANGE.EQ.2).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
$ ((IRANGE.EQ.3).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
M = 1
W(1) = D(1)
* The computation error of the eigenvalue is zero
WERR(1) = ZERO
WGAP(1) = ZERO
IBLOCK( 1 ) = 1
INDEXW( 1 ) = 1
GERS(1) = D( 1 )
GERS(2) = D( 1 )
ENDIF
* store the shift for the initial RRR, which is zero in this case
E(1) = ZERO
RETURN
END IF
* General case: tridiagonal matrix of order > 1
* Init WERR, WGAP.
DO 1 I =1,N
WERR(I) = ZERO
1 CONTINUE
DO 2 I =1,N
WGAP(I) = ZERO
2 CONTINUE
* Compute Gerschgorin intervals and spectral diameter.
* Compute maximum off-diagonal entry and pivmin.
GL = D(1)
GU = D(1)
EOLD = ZERO
EMAX = ZERO
E(N) = ZERO
DO 5 I = 1,N
EABS = ABS( E(I) )
IF( EABS .GE. EMAX ) THEN
EMAX = EABS
END IF
TMP = EABS + EOLD
EOLD = EABS
TMP1 = D(I) - TMP
TMP2 = D(I) + TMP
GL = MIN( GL, TMP1 )
GU = MAX( GU, TMP2 )
GERS( 2*I-1) = TMP1
GERS( 2*I ) = TMP2
5 CONTINUE
* The minimum pivot allowed in the sturm sequence for T
PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
* Compute spectral diameter. The Gerschgorin bounds give an
* estimate that is wrong by at most a factor of SQRT(2)
SPDIAM = GU - GL
* Compute splitting points
CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM,
$ NSPLIT, ISPLIT, IINFO )
IF( IRANGE.EQ.1 ) THEN
* Set interval [VL,VU] that contains all eigenvalues
VL = GL
VU = GU
ENDIF
* We call DLARRD2 to find crude approximations to the eigenvalues
* in the desired range. In case IRANGE = 3, we also obtain the
* interval (VL,VU] that contains all the wanted eigenvalues.
* An interval [LEFT,RIGHT] has converged if
* RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
* DLARRD2 needs a WORK of size 4*N, IWORK of size 3*N
CALL DLARRD2( RANGE, 'B', N, VL, VU, IL, IU, GERS,
$ BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
$ MM, W, WERR, VL, VU, IBLOCK, INDEXW,
$ WORK, IWORK, DOL, DOU, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
* Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
DO 14 I = MM+1,N
W( I ) = ZERO
WERR( I ) = ZERO
IBLOCK( I ) = 0
INDEXW( I ) = 0
14 CONTINUE
***
* Loop over unreduced blocks
IBEGIN = 1
WBEGIN = 1
DO 170 JBLK = 1, NSPLIT
IEND = ISPLIT( JBLK )
IN = IEND - IBEGIN + 1
* 1 X 1 block
IF( IN.EQ.1 ) THEN
IF( (IRANGE.EQ.1).OR.( (IRANGE.EQ.2).AND.
$ ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
$ .OR. ( (IRANGE.EQ.3).AND.(IBLOCK(WBEGIN).EQ.JBLK))
$ ) THEN
M = M + 1
W( M ) = D( IBEGIN )
WERR(M) = ZERO
* The gap for a single block doesn't matter for the later
* algorithm and is assigned an arbitrary large value
WGAP(M) = ZERO
IBLOCK( M ) = JBLK
INDEXW( M ) = 1
WBEGIN = WBEGIN + 1
ENDIF
* E( IEND ) holds the shift for the initial RRR
E( IEND ) = ZERO
IBEGIN = IEND + 1
GO TO 170
END IF
*
* Blocks of size larger than 1x1
*
* E( IEND ) will hold the shift for the initial RRR, for now set it =0
E( IEND ) = ZERO
IF( ( IRANGE.EQ.1 ) .OR.
$ ((IRANGE.EQ.3).AND.(IL.EQ.1.AND.IU.EQ.N)) ) THEN
* MB = number of eigenvalues to compute
MB = IN
WEND = WBEGIN + MB - 1
INDL = 1
INDU = IN
ELSE
* Count the number of eigenvalues in the current block.
MB = 0
DO 20 I = WBEGIN,MM
IF( IBLOCK(I).EQ.JBLK ) THEN
MB = MB+1
ELSE
GOTO 21
ENDIF
20 CONTINUE
21 CONTINUE
IF( MB.EQ.0) THEN
* No eigenvalue in the current block lies in the desired range
* E( IEND ) holds the shift for the initial RRR
E( IEND ) = ZERO
IBEGIN = IEND + 1
GO TO 170
ENDIF
*
WEND = WBEGIN + MB - 1
* Find local index of the first and last desired evalue.
INDL = INDEXW(WBEGIN)
INDU = INDEXW( WEND )
ENDIF
*
IF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
* if this subblock contains no desired eigenvalues,
* skip the computation of this representation tree
IBEGIN = IEND + 1
WBEGIN = WEND + 1
M = M + MB
GO TO 170
END IF
*
IF(.NOT. ( IRANGE.EQ.1 ) ) THEN
* At this point, the sequential code decides
* whether dqds or bisection is more efficient.
* Note: in the parallel code, we do not use dqds.
* However, we do not change the shift strategy
* if USEDQD is TRUE, then the same shift is used as for
* the sequential code when it uses dqds.
*
USEDQD = ( MB .GT. FAC*IN )
*
* Calculate gaps for the current block
* In later stages, when representations for individual
* eigenvalues are different, we use SIGMA = E( IEND ).
SIGMA = ZERO
DO 30 I = WBEGIN, WEND - 1
WGAP( I ) = MAX( ZERO,
$ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
30 CONTINUE
WGAP( WEND ) = MAX( ZERO,
$ VU - SIGMA - (W( WEND )+WERR( WEND )))
ENDIF
*
* Find local outer bounds GL,GU for the block
GL = D(IBEGIN)
GU = D(IBEGIN)
DO 15 I = IBEGIN , IEND
GL = MIN( GERS( 2*I-1 ), GL )
GU = MAX( GERS( 2*I ), GU )
15 CONTINUE
SPDIAM = GU - GL
* Save local spectral diameter for later use
SDIAM(JBLK) = SPDIAM
* Find approximations to the extremal eigenvalues of the block
CALL DLARRK( IN, 1, GL, GU, D(IBEGIN),
$ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
ISLEFT = MAX(GL, TMP - TMP1
$ - HNDRD * EPS* ABS(TMP - TMP1))
CALL DLARRK( IN, IN, GL, GU, D(IBEGIN),
$ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
ISRGHT = MIN(GU, TMP + TMP1
$ + HNDRD * EPS * ABS(TMP + TMP1))
IF( ( IRANGE.EQ.1 ).OR.USEDQD ) THEN
* Case of DQDS shift
* Improve the estimate of the spectral diameter
SPDIAM = ISRGHT - ISLEFT
ELSE
* Case of bisection
* Find approximations to the wanted extremal eigenvalues
ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
$ - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
$ + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
ENDIF
* Decide whether the base representation for the current block
* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
* should be on the left or the right end of the current block.
* The strategy is to shift to the end which is "more populated"
IF( IRANGE.EQ.1 ) THEN
* If all the eigenvalues have to be computed, we use dqd
USEDQD = .TRUE.
* INDL is the local index of the first eigenvalue to compute
INDL = 1
INDU = IN
* MB = number of eigenvalues to compute
MB = IN
WEND = WBEGIN + MB - 1
* Define 1/4 and 3/4 points of the spectrum
S1 = ISLEFT + FOURTH * SPDIAM
S2 = ISRGHT - FOURTH * SPDIAM
ELSE
* DLARRD2 has computed IBLOCK and INDEXW for each eigenvalue
* approximation.
* choose sigma
IF( USEDQD ) THEN
S1 = ISLEFT + FOURTH * SPDIAM
S2 = ISRGHT - FOURTH * SPDIAM
ELSE
TMP = MIN(ISRGHT,VU) - MAX(ISLEFT,VL)
S1 = MAX(ISLEFT,VL) + FOURTH * TMP
S2 = MIN(ISRGHT,VU) - FOURTH * TMP
ENDIF
ENDIF
* Compute the negcount at the 1/4 and 3/4 points
IF(MB.GT.2) THEN
CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN),
$ E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
ENDIF
IF(MB.LE.2) THEN
SIGMA = GL
SGNDEF = ONE
ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
IF( IRANGE.EQ.1 ) THEN
SIGMA = MAX(ISLEFT,GL)
ELSEIF( USEDQD ) THEN
* use Gerschgorin bound as shift to get pos def matrix
SIGMA = ISLEFT
ELSE
* use approximation of the first desired eigenvalue of the
* block as shift
SIGMA = MAX(ISLEFT,VL)
ENDIF
SGNDEF = ONE
ELSE
IF( IRANGE.EQ.1 ) THEN
SIGMA = MIN(ISRGHT,GU)
ELSEIF( USEDQD ) THEN
* use Gerschgorin bound as shift to get neg def matrix
* for dqds
SIGMA = ISRGHT
ELSE
* use approximation of the first desired eigenvalue of the
* block as shift
SIGMA = MIN(ISRGHT,VU)
ENDIF
SGNDEF = -ONE
ENDIF
* An initial SIGMA has been chosen that will be used for computing
* T - SIGMA I = L D L^T
* Define the increment TAU of the shift in case the initial shift
* needs to be refined to obtain a factorization with not too much
* element growth.
IF( USEDQD ) THEN
TAU = SPDIAM*EPS*N + TWO*PIVMIN
TAU = MAX(TAU,EPS*ABS(SIGMA))
ELSE
IF(MB.GT.1) THEN
CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN))
IF( SGNDEF.EQ.ONE ) THEN
TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
TAU = MAX(TAU,WERR(WBEGIN))
ELSE
TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
TAU = MAX(TAU,WERR(WEND))
ENDIF
ELSE
TAU = WERR(WBEGIN)
ENDIF
ENDIF
*
DO 80 IDUM = 1, MAXTRY
* Compute L D L^T factorization of tridiagonal matrix T - sigma I.
* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
* pivots in WORK(2*IN+1:3*IN)
DPIVOT = D( IBEGIN ) - SIGMA
WORK( 1 ) = DPIVOT
DMAX = ABS( WORK(1) )
J = IBEGIN
DO 70 I = 1, IN - 1
WORK( 2*IN+I ) = ONE / WORK( I )
TMP = E( J )*WORK( 2*IN+I )
WORK( IN+I ) = TMP
DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
WORK( I+1 ) = DPIVOT
DMAX = MAX( DMAX, ABS(DPIVOT) )
J = J + 1
70 CONTINUE
* check for element growth
IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
NOREP = .TRUE.
ELSE
NOREP = .FALSE.
ENDIF
IF(NOREP) THEN
* Note that in the case of IRANGE=1, we use the Gerschgorin
* shift which makes the matrix definite. So we should end up
* here really only in the case of IRANGE = 2,3
IF( IDUM.EQ.MAXTRY-1 ) THEN
IF( SGNDEF.EQ.ONE ) THEN
* The fudged Gerschgorin shift should succeed
SIGMA =
$ GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
ELSE
SIGMA =
$ GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
END IF
ELSE
SIGMA = SIGMA - SGNDEF * TAU
TAU = TWO * TAU
END IF
ELSE
* an initial RRR is found
GO TO 83
END IF
80 CONTINUE
* if the program reaches this point, no base representation could be
* found in MAXTRY iterations.
INFO = 2
RETURN
83 CONTINUE
* At this point, we have found an initial base representation
* T - SIGMA I = L D L^T with not too much element growth.
* Store the shift.
E( IEND ) = SIGMA
* Store D and L.
CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
IF(RNDPRT .AND. MB.GT.1 ) THEN
*
* Perturb each entry of the base representation by a small
* (but random) relative amount to overcome difficulties with
* glued matrices.
*
DO 122 I = 1, 4
ISEED( I ) = 1
122 CONTINUE
CALL DLARNV(2, ISEED, 2*IN-1, WORK(1))
DO 125 I = 1,IN-1
D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(2*I-1))
E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(2*I))
125 CONTINUE
D(IEND) = D(IEND)*(ONE+EPS*PERT*WORK(2*IN-1))
*
ENDIF
*
* Compute the required eigenvalues of L D L' by bisection
* Shift the eigenvalue approximations
* according to the shift of their representation.
DO 134 J=WBEGIN,WEND
W(J) = W(J) - SIGMA
WERR(J) = WERR(J) + ABS(W(J)) * EPS
134 CONTINUE
* call DLARRB2 to reduce eigenvalue error of the approximations
* from DLARRD2
DO 135 I = IBEGIN, IEND-1
WORK( I ) = D( I ) * E( I )**2
135 CONTINUE
* use bisection to find EV from INDL to INDU
INDL = INDEXW( WBEGIN )
INDU = INDEXW( WEND )
*
* Indicate that the current block contains eigenvalues that
* are potentially needed later.
*
NEEDIL = MIN(NEEDIL,WBEGIN)
NEEDIU = MAX(NEEDIU,WEND)
*
* For the parallel distributed case, only compute
* those eigenvalues that have to be computed as indicated by DOL, DOU
*
MYWBEG = MAX(WBEGIN,DOL)
MYWEND = MIN(WEND,DOU)
*
IF(MYWBEG.GT.WBEGIN) THEN
* This is the leftmost block containing wanted eigenvalues
* as well as unwanted ones. To save on communication,
* check if NEEDIL can be increased even further:
* on the left end, only the eigenvalues of the cluster
* including MYWBEG are needed
DO 136 I = WBEGIN, MYWBEG-1
IF ( WGAP(I).GE.MINRGP*ABS(W(I)) ) THEN
NEEDIL = MAX(I+1,NEEDIL)
ENDIF
136 CONTINUE
ENDIF
IF(MYWEND.LT.WEND) THEN
* This is the rightmost block containing wanted eigenvalues
* as well as unwanted ones. To save on communication,
* Check if NEEDIU can be decreased even further.
DO 137 I = MYWEND,WEND-1
IF ( WGAP(I).GE.MINRGP*ABS(W(I)) ) THEN
NEEDIU = MIN(I,NEEDIU)
GOTO 138
ENDIF
137 CONTINUE
138 CONTINUE
ENDIF
*
* Only compute eigenvalues from MYINDL to MYINDU
* instead of INDL to INDU
*
MYINDL = INDEXW( MYWBEG )
MYINDU = INDEXW( MYWEND )
*
LGPVMN = LOG( PIVMIN )
LGSPDM = LOG( SPDIAM + PIVMIN )
CALL DLARRB2(IN, D(IBEGIN), WORK(IBEGIN),
$ MYINDL, MYINDU, RTOL1, RTOL2, MYINDL-1,
$ W(MYWBEG), WGAP(MYWBEG), WERR(MYWBEG),
$ WORK( 2*N+1 ), IWORK, PIVMIN,
$ LGPVMN, LGSPDM, IN, IINFO )
IF( IINFO .NE. 0 ) THEN
INFO = -4
RETURN
END IF
* DLARRB2 computes all gaps correctly except for the last one
* Record distance to VU/GU
WGAP( WEND ) = MAX( ZERO,
$ ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
DO 140 I = INDL, INDU
M = M + 1
IBLOCK(M) = JBLK
INDEXW(M) = I
140 CONTINUE
*
* proceed with next block
IBEGIN = IEND + 1
WBEGIN = WEND + 1
170 CONTINUE
*
IF (M.LT.DOU-DOL+1) THEN
INFO = -9
ENDIF
RETURN
*
* end of DLARRE2A
*
END
|