File: dstegr2a.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (465 lines) | stat: -rw-r--r-- 17,132 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
      SUBROUTINE DSTEGR2A( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
     $                   M, W, Z, LDZ, NZC, WORK, LWORK, IWORK,
     $                   LIWORK, DOL, DOU, NEEDIL, NEEDIU,
     $                   INDERR, NSPLIT, PIVMIN, SCALE, WL, WU,
     $                   INFO )
*
*  -- ScaLAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     July 4, 2010
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE
      INTEGER            DOL, DOU, IL, INDERR, INFO, IU, LDZ, LIWORK,
     $                   LWORK, M, N, NEEDIL, NEEDIU, NSPLIT, NZC
      DOUBLE PRECISION PIVMIN, SCALE, VL, VU, WL, WU

*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
      DOUBLE PRECISION   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSTEGR2A computes selected eigenvalues and initial representations.
*  needed for eigenvector computations in DSTEGR2B. It is invoked in the 
*  ScaLAPACK MRRR driver PDSYEVR and the corresponding Hermitian
*  version when both eigenvalues and eigenvectors are computed in parallel.
*  on multiple processors. For this case, DSTEGR2A implements the FIRST 
*  part of the MRRR algorithm, parallel eigenvalue computation and finding
*  the root RRR. At the end of DSTEGR2A,
*  other processors might have a part of the spectrum that is needed to
*  continue the computation locally. Once this eigenvalue information has
*  been received by the processor, the computation can then proceed by calling 
*  the SECOND part of the parallel MRRR algorithm, DSTEGR2B.
*
*  Please note:
*  1. The calling sequence has two additional INTEGER parameters, 
*     (compared to LAPACK's DSTEGR), these are
*     DOL and DOU and should satisfy M>=DOU>=DOL>=1. 
*     These parameters are only relevant for the case JOBZ = 'V'.
*
*     Globally invoked over all processors, DSTEGR2A computes 
*     ALL the eigenVALUES specified by RANGE. 
*     RANGE= 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in (VL,VU] will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*     DSTEGR2A LOCALLY only computes the eigenvalues 
*     corresponding to eigenvalues DOL through DOU in W. (That is,
*     instead of computing the eigenvectors belonging to W(1) 
*     through W(M), only the eigenvectors belonging to eigenvalues
*     W(DOL) through W(DOU) are computed. In this case, only the
*     eigenvalues DOL:DOU are guaranteed to be fully accurate.
*
*  2. M is NOT the number of eigenvalues specified by RANGE, but it is 
*     M = DOU - DOL + 1. Instead, M refers to the number of eigenvalues computed on 
*     this processor.
*
*  3. While no eigenvectors are computed in DSTEGR2A itself (this is
*     done later in DSTEGR2B), the interface
*     If JOBZ = 'V' then, depending on RANGE and DOL, DOU, DSTEGR2A 
*     might need more workspace in Z then the original DSTEGR. 
*     In particular, the arrays W and Z might not contain all the wanted eigenpairs
*     locally, instead this information is distributed over other 
*     processors.
*  
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the half-open interval (VL,VU]
*                 will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the N diagonal elements of the tridiagonal matrix
*          T. On exit, D is overwritten.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the (N-1) subdiagonal elements of the tridiagonal
*          matrix T in elements 1 to N-1 of E. E(N) need not be set on
*          input, but is used internally as workspace.
*          On exit, E is overwritten.
*
*  VL      (input) DOUBLE PRECISION
*  VU      (input) DOUBLE PRECISION
*          If RANGE='V', the lower and upper bounds of the interval to
*          be searched for eigenvalues. VL < VU.
*          Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (input) INTEGER
*  IU      (input) INTEGER
*          If RANGE='I', the indices (in ascending order) of the
*          smallest and largest eigenvalues to be returned.
*          1 <= IL <= IU <= N, if N > 0.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  M       (output) INTEGER
*          Globally summed over all processors, M equals 
*          the total number of eigenvalues found.  0 <= M <= N.
*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*          The local output equals M = DOU - DOL + 1.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          The first M elements contain approximations to the selected 
*          eigenvalues in ascending order. Note that immediately after 
*          exiting this routine, only the eigenvalues from
*          position DOL:DOU are to reliable on this processor
*          because the eigenvalue computation is done in parallel.          
*          The other entries outside DOL:DOU are very crude preliminary
*          approximations. Other processors hold reliable information on 
*          these other parts of the W array. 
*          This information is communicated in the ScaLAPACK driver.
*
*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
*          DSTEGR2A does not compute eigenvectors, this is done 
*          in DSTEGR2B. The argument Z as well as all related
*          other arguments only appear to keep the interface consistent
*          and to signal to the user that this subroutine is meant to 
*          be used when eigenvectors are computed.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', then LDZ >= max(1,N).
*
*  NZC     (input) INTEGER
*          The number of eigenvectors to be held in the array Z.  
*          If RANGE = 'A', then NZC >= max(1,N).
*          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
*          If RANGE = 'I', then NZC >= IU-IL+1.
*          If NZC = -1, then a workspace query is assumed; the
*          routine calculates the number of columns of the array Z that
*          are needed to hold the eigenvectors. 
*          This value is returned as the first entry of the Z array, and
*          no error message related to NZC is issued.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal
*          (and minimal) LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,18*N)
*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued.
*
*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
*          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
*          if only the eigenvalues are to be computed.
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued.
*
*  DOL     (input) INTEGER
*  DOU     (input) INTEGER
*          From all the eigenvalues W(1:M), only eigenvalues
*          W(DOL:DOU) are computed.
*
*  NEEDIL  (output) INTEGER
*  NEEDIU  (output) INTEGER
*          The indices of the leftmost and rightmost eigenvalues
*          needed to accurately compute the relevant part of the 
*          representation tree. This information can be used to 
*          find out which processors have the relevant eigenvalue
*          information needed so that it can be communicated.
*
*  INDERR  (output) INTEGER
*          INDERR points to the place in the work space where 
*          the eigenvalue uncertainties (errors) are stored.
*
*  NSPLIT  (output) INTEGER
*          The number of blocks T splits into. 1 <= NSPLIT <= N.
*
*  PIVMIN  (output) DOUBLE PRECISION
*          The minimum pivot in the sturm sequence for T.
*
*  SCALE   (output) DOUBLE PRECISION 
*          The scaling factor for the tridiagonal T.
*
*  WL      (output) DOUBLE PRECISION
*  WU      (output) DOUBLE PRECISION
*          The interval (WL, WU] contains all the wanted eigenvalues.         
*          It is either given by the user or computed in DLARRE2A.
*
*  INFO    (output) INTEGER
*          On exit, INFO
*          = 0:  successful exit
*          other:if INFO = -i, the i-th argument had an illegal value
*                if INFO = 10X, internal error in DLARRE2A,
*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is 
*                the nonzero error code returned by DLARRE2A.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
     $                     FOUR = 4.0D0,
     $                     MINRGP = 1.0D-3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
      INTEGER            IIL, IINDBL, IINDW, IINDWK, IINFO, IINSPL, IIU,
     $                   INDE2, INDGP, INDGRS, INDSDM, INDWRK, ITMP,
     $                   ITMP2, J, LIWMIN, LWMIN, NZCMIN
      DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, RTOL1, RTOL2, SAFMIN,
     $                   SMLNUM, THRESH, TNRM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           LSAME, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARRC, DLARRE2A, DSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
*
      LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
      ZQUERY = ( NZC.EQ.-1 )

*     DSTEGR2A needs WORK of size 6*N, IWORK of size 3*N.
*     In addition, DLARRE2A needs WORK of size 6*N, IWORK of size 5*N.
*     Furthermore, DLARRV2 needs WORK of size 12*N, IWORK of size 7*N.
*     Workspace is kept consistent with DSTEGR2B even though 
*     DLARRV2 is not called here.
      IF( WANTZ ) THEN
         LWMIN = 18*N
         LIWMIN = 10*N
      ELSE
*        need less workspace if only the eigenvalues are wanted         
         LWMIN = 12*N
         LIWMIN = 8*N
      ENDIF

      WL = ZERO
      WU = ZERO
      IIL = 0
      IIU = 0

      IF( VALEIG ) THEN
*        We do not reference VL, VU in the cases RANGE = 'I','A'
*        The interval (WL, WU] contains all the wanted eigenvalues.         
*        It is either given by the user or computed in DLARRE2A.
         WL = VL
         WU = VU
      ELSEIF( INDEIG ) THEN
*        We do not reference IL, IU in the cases RANGE = 'V','A'
         IIL = IL
         IIU = IU
      ENDIF  
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
         INFO = -7
      ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
         INFO = -8
      ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -13
      ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -17
      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -19
      END IF
*
*     Get machine constants.
*
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
      IF( INFO.EQ.0 ) THEN
         WORK( 1 ) = LWMIN
         IWORK( 1 ) = LIWMIN
*
         IF( WANTZ .AND. ALLEIG ) THEN
            NZCMIN = N
            IIL = 1
            IIU = N
         ELSE IF( WANTZ .AND. VALEIG ) THEN
            CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN, 
     $                            NZCMIN, ITMP, ITMP2, INFO )
            IIL = ITMP+1
            IIU = ITMP2
         ELSE IF( WANTZ .AND. INDEIG ) THEN
            NZCMIN = IIU-IIL+1
         ELSE 
*           WANTZ .EQ. FALSE.   
            NZCMIN = 0
         ENDIF  
         IF( ZQUERY .AND. INFO.EQ.0 ) THEN
            Z( 1,1 ) = NZCMIN
         ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
            INFO = -14
         END IF
      END IF

      IF ( WANTZ ) THEN
         IF ( DOL.LT.1 .OR. DOL.GT.NZCMIN ) THEN 
            INFO = -20
         ENDIF
         IF ( DOU.LT.1 .OR. DOU.GT.NZCMIN .OR. DOU.LT.DOL) THEN 
            INFO = -21
         ENDIF
      ENDIF

      IF( INFO.NE.0 ) THEN
*
C         Disable sequential error handler
C         for parallel case
C         CALL XERBLA( 'DSTEGR2A', -INFO )
*
         RETURN
      ELSE IF( LQUERY .OR. ZQUERY ) THEN
         RETURN
      END IF

*     Initialize NEEDIL and NEEDIU, these values are changed in DLARRE2A
      NEEDIL = DOU
      NEEDIU = DOL
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ALLEIG .OR. INDEIG ) THEN
            M = 1
            W( 1 ) = D( 1 )
         ELSE
            IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
               M = 1
               W( 1 ) = D( 1 )
            END IF
         END IF
         IF( WANTZ )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
      INDGRS = 1
      INDERR = 2*N + 1
      INDGP = 3*N + 1
      INDSDM = 4*N + 1
      INDE2 = 5*N + 1
      INDWRK = 6*N + 1
*
      IINSPL = 1
      IINDBL = N + 1
      IINDW = 2*N + 1
      IINDWK = 3*N + 1
*
*     Scale matrix to allowable range, if necessary.
*
      SCALE = ONE
      TNRM = DLANST( 'M', N, D, E )
      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
         SCALE = RMIN / TNRM
      ELSE IF( TNRM.GT.RMAX ) THEN
         SCALE = RMAX / TNRM
      END IF
      IF( SCALE.NE.ONE ) THEN
         CALL DSCAL( N, SCALE, D, 1 )
         CALL DSCAL( N-1, SCALE, E, 1 )
         TNRM = TNRM*SCALE
         IF( VALEIG ) THEN
*           If eigenvalues in interval have to be found, 
*           scale (WL, WU] accordingly
            WL = WL*SCALE
            WU = WU*SCALE
         ENDIF
      END IF
*
*     Compute the desired eigenvalues of the tridiagonal after splitting
*     into smaller subblocks if the corresponding off-diagonal elements
*     are small
*     THRESH is the splitting parameter for DLARRA in DLARRE2A      
*     A negative THRESH forces the old splitting criterion based on the
*     size of the off-diagonal.
      THRESH = -EPS
      IINFO = 0

*     Store the squares of the offdiagonal values of T
      DO 5 J = 1, N-1
         WORK( INDE2+J-1 ) = E(J)**2
 5    CONTINUE

*     Set the tolerance parameters for bisection
      IF( .NOT.WANTZ ) THEN
*        DLARRE2A computes the eigenvalues to full precision.   
         RTOL1 = FOUR * EPS
         RTOL2 = FOUR * EPS
      ELSE   
*        DLARRE2A computes the eigenvalues to less than full precision.
*        DLARRV2 will refine the eigenvalue approximations, and we can
*        need less accurate initial bisection in DLARRE2A.
         RTOL1 = FOUR*SQRT(EPS)
         RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
      ENDIF
      CALL DLARRE2A( RANGE, N, WL, WU, IIL, IIU, D, E, 
     $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT, 
     $             IWORK( IINSPL ), M, DOL, DOU, NEEDIL, NEEDIU,
     $             W, WORK( INDERR ),
     $             WORK( INDGP ), IWORK( IINDBL ),
     $             IWORK( IINDW ), WORK( INDGRS ), 
     $             WORK( INDSDM ), PIVMIN,
     $             WORK( INDWRK ), IWORK( IINDWK ), 
     $             MINRGP, IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = 100 + ABS( IINFO )
         RETURN
      END IF
*     Note that if RANGE .NE. 'V', DLARRE2A computes bounds on the desired
*     part of the spectrum. All desired eigenvalues are contained in
*     (WL,WU]


      RETURN
*
*     End of DSTEGR2A
*
      END