File: dstegr2b.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (345 lines) | stat: -rw-r--r-- 12,965 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
      SUBROUTINE DSTEGR2B( JOBZ, N, D, E, 
     $                   M, W, Z, LDZ, NZC, ISUPPZ, WORK, LWORK, IWORK,
     $                   LIWORK, DOL, DOU, NEEDIL, NEEDIU,
     $                   INDWLC, PIVMIN, SCALE, WL, WU,
     $                   VSTART, FINISH, MAXCLS,
     $                   NDEPTH, PARITY, ZOFFSET, INFO )
*
*  -- ScaLAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     July 4, 2010
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ
      INTEGER            DOL, DOU, INDWLC, INFO, LDZ, LIWORK, LWORK, M,
     $                   MAXCLS, N, NDEPTH, NEEDIL, NEEDIU, NZC, PARITY,
     $                   ZOFFSET

      DOUBLE PRECISION PIVMIN, SCALE, WL, WU
      LOGICAL VSTART, FINISH

*     ..
*     .. Array Arguments ..
      INTEGER            ISUPPZ( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
      DOUBLE PRECISION   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSTEGR2B should only be called after a call to DSTEGR2A.
*  From eigenvalues and initial representations computed by DSTEGR2A,
*  DSTEGR2B computes the selected eigenvalues and eigenvectors
*  of the real symmetric tridiagonal matrix in parallel 
*  on multiple processors. It is potentially invoked multiple times
*  on a given processor because the locally relevant representation tree 
*  might depend on spectral information that is "owned" by other processors
*  and might need to be communicated. 
* 
*  Please note:
*  1. The calling sequence has two additional INTEGER parameters, 
*     DOL and DOU, that should satisfy M>=DOU>=DOL>=1. 
*     These parameters are only relevant for the case JOBZ = 'V'.
*     DSTEGR2B  ONLY computes the eigenVECTORS 
*     corresponding to eigenvalues DOL through DOU in W. (That is,
*     instead of computing the eigenvectors belonging to W(1) 
*     through W(M), only the eigenvectors belonging to eigenvalues
*     W(DOL) through W(DOU) are computed. In this case, only the
*     eigenvalues DOL:DOU are guaranteed to be accurately refined
*     to all figures by Rayleigh-Quotient iteration.
*
*  2. The additional arguments VSTART, FINISH, NDEPTH, PARITY, ZOFFSET 
*     are included as a thread-safe implementation equivalent to SAVE variables.
*     These variables store details about the local representation tree which is
*     computed layerwise. For scalability reasons, eigenvalues belonging to the 
*     locally relevant representation tree might be computed on other processors.
*     These need to be communicated before the inspection of the RRRs can proceed
*     on any given layer.           
*     Note that only when the variable FINISH is true, the computation has ended
*     All eigenpairs between DOL and DOU have been computed. M is set = DOU - DOL + 1.
*
*  3. DSTEGR2B needs more workspace in Z than the sequential DSTEGR. 
*     It is used to store the conformal embedding of the local representation tree.  
*  
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the N diagonal elements of the tridiagonal matrix
*          T. On exit, D is overwritten.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the (N-1) subdiagonal elements of the tridiagonal
*          matrix T in elements 1 to N-1 of E. E(N) need not be set on
*          input, but is used internally as workspace.
*          On exit, E is overwritten.
*
*  M       (input) INTEGER
*          The total number of eigenvalues found
*          in DSTEGR2A.  0 <= M <= N.
*
*  W       (input) DOUBLE PRECISION array, dimension (N)
*          The first M elements contain approximations to the selected 
*          eigenvalues in ascending order. Note that only the eigenvalues from
*          the locally relevant part of the representation tree, that is
*          all the clusters that include eigenvalues from DOL:DOU, are reliable 
*          on this processor. (It does not need to know about any others anyway.)
*
*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
*          If JOBZ = 'V', and if INFO = 0, then 
*          a subset of the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix T
*          corresponding to the selected eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          See DOL, DOU for more information.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', then LDZ >= max(1,N).
*
*  NZC     (input) INTEGER
*          The number of eigenvectors to be held in the array Z.  
*
*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
*          The support of the eigenvectors in Z, i.e., the indices
*          indicating the nonzero elements in Z. The i-th computed eigenvector
*          is nonzero only in elements ISUPPZ( 2*i-1 ) through
*          ISUPPZ( 2*i ). This is relevant in the case when the matrix 
*          is split. ISUPPZ is only set if N>2.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal
*          (and minimal) LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,18*N)
*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued.
*
*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
*          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
*          if only the eigenvalues are to be computed.
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued.
*
*  DOL     (input) INTEGER
*  DOU     (input) INTEGER
*          From the eigenvalues W(1:M), only eigenvectors 
*          Z(:,DOL) to Z(:,DOU) are computed.
*          If DOL > 1, then Z(:,DOL-1-ZOFFSET) is used and overwritten.
*          If DOU < M, then Z(:,DOU+1-ZOFFSET) is used and overwritten.
*
*  NEEDIL  (input/output) INTEGER 
*  NEEDIU  (input/output) INTEGER
*          Describes which are the left and right outermost eigenvalues 
*          still to be computed. Initially computed by DLARRE2A,
*          modified in the course of the algorithm.
*
*  INDWLC  (output) DOUBLE PRECISION
*          Pointer into the workspace, location where the local
*          eigenvalue representations are stored. ("Local eigenvalues"
*          are those relative to the individual shifts of the RRRs.)
*
*  PIVMIN  (input) DOUBLE PRECISION
*          The minimum pivot in the sturm sequence for T.
*
*  SCALE   (input) DOUBLE PRECISION 
*          The scaling factor for T. Used for unscaling the eigenvalues
*          at the very end of the algorithm.
*
*  WL      (input) DOUBLE PRECISION
*  WU      (input) DOUBLE PRECISION
*          The interval (WL, WU] contains all the wanted eigenvalues.         
*
*  VSTART  (input/output) LOGICAL 
*          .TRUE. on initialization, set to .FALSE. afterwards.
*
*  FINISH  (input/output) LOGICAL
*          indicates whether all eigenpairs have been computed
*
*  MAXCLS  (input/output) INTEGER
*          The largest cluster worked on by this processor in the
*          representation tree.
*
*  NDEPTH  (input/output) INTEGER
*          The current depth of the representation tree. Set to
*          zero on initial pass, changed when the deeper levels of
*          the representation tree are generated. 
*
*  PARITY  (input/output) INTEGER
*          An internal parameter needed for the storage of the
*          clusters on the current level of the representation tree.
*
*  ZOFFSET (input) INTEGER
*          Offset for storing the eigenpairs when Z is distributed
*          in 1D-cyclic fashion
*
*  INFO    (output) INTEGER
*          On exit, INFO
*          = 0:  successful exit
*          other:if INFO = -i, the i-th argument had an illegal value
*                if INFO = 20X, internal error in DLARRV2.
*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is 
*                the nonzero error code returned by DLARRV2.
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, FOUR, MINRGP
      PARAMETER          ( ONE = 1.0D0,
     $                     FOUR = 4.0D0,
     $                     MINRGP = 1.0D-3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, WANTZ, ZQUERY
      INTEGER            IINDBL, IINDW, IINDWK, IINFO, IINSPL, INDERR,
     $                   INDGP, INDGRS, INDSDM, INDWRK, ITMP, J, LIWMIN,
     $                   LWMIN
      DOUBLE PRECISION   EPS, RTOL1, RTOL2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           LSAME, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARRV2, DSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
*
      LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
      ZQUERY = ( NZC.EQ.-1 )

*     DSTEGR2B needs WORK of size 6*N, IWORK of size 3*N.
*     In addition, DLARRE2A needed WORK of size 6*N, IWORK of size 5*N.
*     Workspace is kept consistent even though DLARRE2A is not called here.
*     Furthermore, DLARRV2 needs WORK of size 12*N, IWORK of size 7*N.
      IF( WANTZ ) THEN
         LWMIN = 18*N
         LIWMIN = 10*N
      ELSE
*        need less workspace if only the eigenvalues are wanted         
         LWMIN = 12*N
         LIWMIN = 8*N
      ENDIF
*
      INFO = 0
*
*     Get machine constants.
*
      EPS = DLAMCH( 'Precision' )
*
      IF( (N.EQ.0).OR.(N.EQ.1) ) THEN 
         FINISH = .TRUE.       
         RETURN
      ENDIF

      IF(ZQUERY.OR.LQUERY)
     $   RETURN
*
      INDGRS = 1
      INDERR = 2*N + 1
      INDGP = 3*N + 1
      INDSDM = 4*N + 1
      INDWRK = 6*N + 1
      INDWLC = INDWRK
*
      IINSPL = 1
      IINDBL = N + 1
      IINDW = 2*N + 1
      IINDWK = 3*N + 1

*     Set the tolerance parameters for bisection
      RTOL1 = FOUR*SQRT(EPS)
      RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )


      IF( WANTZ ) THEN
*
*        Compute the desired eigenvectors corresponding to the computed
*        eigenvalues
*
         CALL DLARRV2( N, WL, WU, D, E,
     $                PIVMIN, IWORK( IINSPL ), M, 
     $                DOL, DOU, NEEDIL, NEEDIU, MINRGP, RTOL1, RTOL2, 
     $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
     $                IWORK( IINDW ), WORK( INDGRS ), 
     $                WORK( INDSDM ), Z, LDZ,
     $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), 
     $                VSTART, FINISH, 
     $                MAXCLS, NDEPTH, PARITY, ZOFFSET, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 200 + ABS( IINFO )
            RETURN
         END IF
*
      ELSE
*        DLARRE2A computed eigenvalues of the (shifted) root representation
*        DLARRV2 returns the eigenvalues of the unshifted matrix.
*        However, if the eigenvectors are not desired by the user, we need
*        to apply the corresponding shifts from DLARRE2A to obtain the 
*        eigenvalues of the original matrix. 
         DO 30 J = 1, M
            ITMP = IWORK( IINDBL+J-1 )
            W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
 30      CONTINUE
*
         FINISH = .TRUE.
*
      END IF
*

      IF(FINISH) THEN        
*        All eigenpairs have been computed       

*
*        If matrix was scaled, then rescale eigenvalues appropriately.
*
         IF( SCALE.NE.ONE ) THEN
            CALL DSCAL( M, ONE / SCALE, W, 1 )
         END IF
*
*        Correct M if needed 
*
         IF ( WANTZ ) THEN
            IF( DOL.NE.1 .OR. DOU.NE.M ) THEN
               M = DOU - DOL +1
            ENDIF
         ENDIF
*
*        No sorting of eigenpairs is done here, done later in the
*        calling subroutine
*
         WORK( 1 ) = LWMIN
         IWORK( 1 ) = LIWMIN
      ENDIF

      RETURN
*
*     End of DSTEGR2B
*
      END