File: pcgbtrf.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (1107 lines) | stat: -rw-r--r-- 36,766 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
      SUBROUTINE PCGBTRF( N, BWL, BWU, A, JA, DESCA, IPIV, AF, LAF,
     $                    WORK, LWORK, INFO )
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      INTEGER            BWL, BWU, INFO, JA, LAF, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), IPIV( * )
      COMPLEX            A( * ), AF( * ), WORK( * )
*     ..
*
*
*  Purpose
*  =======
*
*  PCGBTRF computes a LU factorization
*  of an N-by-N complex banded
*  distributed matrix
*  with bandwidth BWL, BWU: A(1:N, JA:JA+N-1).
*  Reordering is used to increase parallelism in the factorization.
*  This reordering results in factors that are DIFFERENT from those
*  produced by equivalent sequential codes. These factors cannot
*  be used directly by users; however, they can be used in
*  subsequent calls to PCGBTRS to solve linear systems.
*
*  The factorization has the form
*
*          P A(1:N, JA:JA+N-1) Q = L U
*
*  where U is a banded upper triangular matrix and L is banded
*  lower triangular, and P and Q are permutation matrices.
*  The matrix Q represents reordering of columns
*  for parallelism's sake, while P represents
*  reordering of rows for numerical stability using
*  classic partial pivoting.
*
*  =====================================================================
*
*  Arguments
*  =========
*
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
*
*  BWL     (global input) INTEGER
*          Number of subdiagonals. 0 <= BWL <= N-1
*
*  BWU     (global input) INTEGER
*          Number of superdiagonals. 0 <= BWU <= N-1
*
*  A       (local input/local output) COMPLEX pointer into
*          local memory to an array with first dimension
*          LLD_A >=(2*bwl+2*bwu+1) (stored in DESCA).
*          On entry, this array contains the local pieces of the
*          N-by-N unsymmetric banded distributed matrix
*          A(1:N, JA:JA+N-1) to be factored.
*          This local portion is stored in the packed banded format
*            used in LAPACK. Please see the Notes below and the
*            ScaLAPACK manual for more detail on the format of
*            distributed matrices.
*          On exit, this array contains information containing details
*            of the factorization.
*          Note that permutations are performed on the matrix, so that
*            the factors returned are different from those returned
*            by LAPACK.
*
*  JA      (global input) INTEGER
*          The index in the global array A that points to the start of
*          the matrix to be operated on (which may be either all of A
*          or a submatrix of A).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN.
*          if 1D type (DTYPE_A=501), DLEN >= 7;
*          if 2D type (DTYPE_A=1), DLEN >= 9 .
*          The array descriptor for the distributed matrix A.
*          Contains information of mapping of A to memory. Please
*          see NOTES below for full description and options.
*
*  IPIV    (local output) INTEGER array, dimension >= DESCA( NB ).
*          Pivot indices for local factorizations.
*          Users *should not* alter the contents between
*          factorization and solve.
*
*  AF      (local output) COMPLEX array, dimension LAF.
*          Auxiliary Fillin Space.
*          Fillin is created during the factorization routine
*          PCGBTRF and this is stored in AF. If a linear system
*          is to be solved using PCGBTRS after the factorization
*          routine, AF *must not be altered* after the factorization.
*
*  LAF     (local input) INTEGER
*          Size of user-input Auxiliary Fillin space AF. Must be >=
*          (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu)
*          If LAF is not large enough, an error code will be returned
*          and the minimum acceptable size will be returned in AF( 1 )
*
*  WORK    (local workspace/local output)
*          COMPLEX temporary workspace. This space may
*          be overwritten in between calls to routines. WORK must be
*          the size given in LWORK.
*          On exit, WORK( 1 ) contains the minimal LWORK.
*
*  LWORK   (local input or global input) INTEGER
*          Size of user-input workspace WORK.
*          If LWORK is too small, the minimal acceptable size will be
*          returned in WORK(1) and an error code is returned. LWORK>=
*          1
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = K<=NPROCS, the submatrix stored on processor
*                INFO and factored locally was not
*                nonsingular,  and
*                the factorization was not completed.
*                If INFO = K>NPROCS, the submatrix stored on processor
*                INFO-NPROCS representing interactions with other
*                processors was not
*                nonsingular,
*                and the factorization was not completed.
*
*  =====================================================================
*
*
*  Restrictions
*  ============
*
*  The following are restrictions on the input parameters. Some of these
*    are temporary and will be removed in future releases, while others
*    may reflect fundamental technical limitations.
*
*    Non-cyclic restriction: VERY IMPORTANT!
*      P*NB>= mod(JA-1,NB)+N.
*      The mapping for matrices must be blocked, reflecting the nature
*      of the divide and conquer algorithm as a task-parallel algorithm.
*      This formula in words is: no processor may have more than one
*      chunk of the matrix.
*
*    Blocksize cannot be too small:
*      If the matrix spans more than one processor, the following
*      restriction on NB, the size of each block on each processor,
*      must hold:
*      NB >= (BWL+BWU)+1
*      The bulk of parallel computation is done on the matrix of size
*      O(NB) on each processor. If this is too small, divide and conquer
*      is a poor choice of algorithm.
*
*    Submatrix reference:
*      JA = IB
*      Alignment restriction that prevents unnecessary communication.
*
*
*  =====================================================================
*
*
*  Notes
*  =====
*
*  If the factorization routine and the solve routine are to be called
*    separately (to solve various sets of righthand sides using the same
*    coefficient matrix), the auxiliary space AF *must not be altered*
*    between calls to the factorization routine and the solve routine.
*
*  The best algorithm for solving banded and tridiagonal linear systems
*    depends on a variety of parameters, especially the bandwidth.
*    Currently, only algorithms designed for the case N/P >> bw are
*    implemented. These go by many names, including Divide and Conquer,
*    Partitioning, domain decomposition-type, etc.
*
*  Algorithm description: Divide and Conquer
*
*    The Divide and Conqer algorithm assumes the matrix is narrowly
*      banded compared with the number of equations. In this situation,
*      it is best to distribute the input matrix A one-dimensionally,
*      with columns atomic and rows divided amongst the processes.
*      The basic algorithm divides the banded matrix up into
*      P pieces with one stored on each processor,
*      and then proceeds in 2 phases for the factorization or 3 for the
*      solution of a linear system.
*      1) Local Phase:
*         The individual pieces are factored independently and in
*         parallel. These factors are applied to the matrix creating
*         fillin, which is stored in a non-inspectable way in auxiliary
*         space AF. Mathematically, this is equivalent to reordering
*         the matrix A as P A P^T and then factoring the principal
*         leading submatrix of size equal to the sum of the sizes of
*         the matrices factored on each processor. The factors of
*         these submatrices overwrite the corresponding parts of A
*         in memory.
*      2) Reduced System Phase:
*         A small (max(bwl,bwu)* (P-1)) system is formed representing
*         interaction of the larger blocks, and is stored (as are its
*         factors) in the space AF. A parallel Block Cyclic Reduction
*         algorithm is used. For a linear system, a parallel front solve
*         followed by an analagous backsolve, both using the structure
*         of the factored matrix, are performed.
*      3) Backsubsitution Phase:
*         For a linear system, a local backsubstitution is performed on
*         each processor in parallel.
*
*
*  Descriptors
*  ===========
*
*  Descriptors now have *types* and differ from ScaLAPACK 1.0.
*
*  Note: banded codes can use either the old two dimensional
*    or new one-dimensional descriptors, though the processor grid in
*    both cases *must be one-dimensional*. We describe both types below.
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  One-dimensional descriptors:
*
*  One-dimensional descriptors are a new addition to ScaLAPACK since
*    version 1.0. They simplify and shorten the descriptor for 1D
*    arrays.
*
*  Since ScaLAPACK supports two-dimensional arrays as the fundamental
*    object, we allow 1D arrays to be distributed either over the
*    first dimension of the array (as if the grid were P-by-1) or the
*    2nd dimension (as if the grid were 1-by-P). This choice is
*    indicated by the descriptor type (501 or 502)
*    as described below.
*
*    IMPORTANT NOTE: the actual BLACS grid represented by the
*    CTXT entry in the descriptor may be *either*  P-by-1 or 1-by-P
*    irrespective of which one-dimensional descriptor type
*    (501 or 502) is input.
*    This routine will interpret the grid properly either way.
*    ScaLAPACK routines *do not support intercontext operations* so that
*    the grid passed to a single ScaLAPACK routine *must be the same*
*    for all array descriptors passed to that routine.
*
*    NOTE: In all cases where 1D descriptors are used, 2D descriptors
*    may also be used, since a one-dimensional array is a special case
*    of a two-dimensional array with one dimension of size unity.
*    The two-dimensional array used in this case *must* be of the
*    proper orientation:
*      If the appropriate one-dimensional descriptor is DTYPEA=501
*      (1 by P type), then the two dimensional descriptor must
*      have a CTXT value that refers to a 1 by P BLACS grid;
*      If the appropriate one-dimensional descriptor is DTYPEA=502
*      (P by 1 type), then the two dimensional descriptor must
*      have a CTXT value that refers to a P by 1 BLACS grid.
*
*
*  Summary of allowed descriptors, types, and BLACS grids:
*  DTYPE           501         502         1         1
*  BLACS grid      1xP or Px1  1xP or Px1  1xP       Px1
*  -----------------------------------------------------
*  A               OK          NO          OK        NO
*  B               NO          OK          NO        OK
*
*  Let A be a generic term for any 1D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN  EXPLANATION
*  --------------- ---------- ------------------------------------------
*  DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
*                                TYPE_A = 501: 1-by-P grid.
*                                TYPE_A = 502: P-by-1 grid.
*  CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
*                                the BLACS process grid A is distribu-
*                                ted over. The context itself is glo-
*                                bal, but the handle (the integer
*                                value) may vary.
*  N_A    (global) DESCA( 3 ) The size of the array dimension being
*                                distributed.
*  NB_A   (global) DESCA( 4 ) The blocking factor used to distribute
*                                the distributed dimension of the array.
*  SRC_A  (global) DESCA( 5 ) The process row or column over which the
*                                first row or column of the array
*                                is distributed.
*  LLD_A  (local)  DESCA( 6 ) The leading dimension of the local array
*                                storing the local blocks of the distri-
*                                buted array A. Minimum value of LLD_A
*                                depends on TYPE_A.
*                                TYPE_A = 501: LLD_A >=
*                                   size of undistributed dimension, 1.
*                                TYPE_A = 502: LLD_A >=NB_A, 1.
*  Reserved        DESCA( 7 ) Reserved for future use.
*
*
*
*  =====================================================================
*
*  Implemented for ScaLAPACK by:
*     Andrew J. Cleary, Livermore National Lab and University of Tenn.,
*     and Markus Hegland, Australian Natonal University. Feb., 1997.
*  Based on code written by    : Peter Arbenz, ETH Zurich, 1996.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0 )
      PARAMETER          ( ZERO = 0.0E+0 )
      COMPLEX            CONE, CZERO
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
      INTEGER            INT_ONE
      PARAMETER          ( INT_ONE = 1 )
      INTEGER            DESCMULT, BIGNUM
      PARAMETER          ( DESCMULT = 100, BIGNUM = DESCMULT*DESCMULT )
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            APTR, BBPTR, BIPTR, BM, BM1, BM2, BMN, BN, BW,
     $                   CSRC, DBPTR, FIRST_PROC, I, ICTXT, ICTXT_NEW,
     $                   ICTXT_SAVE, IDUM3, J, JA_NEW, JPTR, L, LAF_MIN,
     $                   LBWL, LBWU, LDB, LDBB, LLDA, LM, LMJ, LN, LNJ,
     $                   LPTR, MYCOL, MYROW, MY_NUM_COLS, NB, NEICOL,
     $                   NP, NPACT, NPCOL, NPROW, NPSTR, NP_SAVE, NRHS,
     $                   ODD_N, ODD_SIZE, ODPTR, OFST, PART_OFFSET,
     $                   PART_SIZE, RETURN_CODE, STORE_N_A,
     $                   WORK_SIZE_MIN
*     ..
*     .. Local Arrays ..
      INTEGER            DESCA_1XP( 7 ), PARAM_CHECK( 9, 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDEXIT, BLACS_GRIDINFO, CAXPY, CGEMM,
     $                   CGERV2D, CGESD2D, CLAMOV, CLATCPY, CPBTRF,
     $                   CPOTRF, CSYRK, CTBTRS, CTRMM, CTRRV2D, CTRSD2D,
     $                   CTRSM, CTRTRS, DESC_CONVERT, GLOBCHK, PXERBLA,
     $                   RESHAPE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      EXTERNAL           LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*
*     Test the input parameters
*
      INFO = 0
*
*     Convert descriptor into standard form for easy access to
*        parameters, check that grid is of right shape.
*
      DESCA_1XP( 1 ) = 501
*
      CALL DESC_CONVERT( DESCA, DESCA_1XP, RETURN_CODE )
*
      IF( RETURN_CODE .NE. 0) THEN
         INFO = -( 6*100 + 2 )
      ENDIF
*
*     Get values out of descriptor for use in code.
*
      ICTXT = DESCA_1XP( 2 )
      CSRC = DESCA_1XP( 5 )
      NB = DESCA_1XP( 4 )
      LLDA = DESCA_1XP( 6 )
      STORE_N_A = DESCA_1XP( 3 )
*
*     Get grid parameters
*
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NP = NPROW * NPCOL
*
*
*
      IF( LWORK .LT. -1) THEN
         INFO = -11
      ELSE IF ( LWORK .EQ. -1 ) THEN
         IDUM3 = -1
      ELSE
         IDUM3 = 1
      ENDIF
*
      IF( N .LT. 0 ) THEN
         INFO = -1
      ENDIF
*
      IF( N+JA-1 .GT. STORE_N_A ) THEN
         INFO = -( 6*100 + 6 )
      ENDIF
*
      IF(( BWL .GT. N-1 ) .OR.
     $   ( BWL .LT. 0 ) ) THEN
         INFO = -2
      ENDIF
*
      IF(( BWU .GT. N-1 ) .OR.
     $   ( BWU .LT. 0 ) ) THEN
         INFO = -3
      ENDIF
*
      IF( LLDA .LT. (2*BWL+2*BWU+1) ) THEN
         INFO = -( 6*100 + 6 )
      ENDIF
*
      IF( NB .LE. 0 ) THEN
         INFO = -( 6*100 + 4 )
      ENDIF
*
      BW = BWU+BWL
*
*     Argument checking that is specific to Divide & Conquer routine
*
      IF( NPROW .NE. 1 ) THEN
         INFO = -( 6*100+2 )
      ENDIF
*
      IF( N .GT. NP*NB-MOD( JA-1, NB )) THEN
         INFO = -( 1 )
         CALL PXERBLA( ICTXT,
     $      'PCGBTRF, D&C alg.: only 1 block per proc',
     $      -INFO )
         RETURN
      ENDIF
*
      IF((JA+N-1.GT.NB) .AND. ( NB.LT.(BWL+BWU+1) )) THEN
         INFO = -( 6*100+4 )
         CALL PXERBLA( ICTXT,
     $      'PCGBTRF, D&C alg.: NB too small',
     $      -INFO )
         RETURN
      ENDIF
*
*
*     Check auxiliary storage size
*
      LAF_MIN = (NB+BWU)*(BWL+BWU)+6*(BWL+BWU)*(BWL+2*BWU)
*
      IF( LAF .LT. LAF_MIN ) THEN
         INFO = -9
*        put minimum value of laf into AF( 1 )
         AF( 1 ) = LAF_MIN
         CALL PXERBLA( ICTXT,
     $      'PCGBTRF: auxiliary storage error ',
     $      -INFO )
         RETURN
      ENDIF
*
*     Check worksize
*
      WORK_SIZE_MIN = 1
*
      WORK( 1 ) = WORK_SIZE_MIN
*
      IF( LWORK .LT. WORK_SIZE_MIN ) THEN
         IF( LWORK .NE. -1 ) THEN
         INFO = -11
*        put minimum value of work into work( 1 )
         WORK( 1 ) = WORK_SIZE_MIN
         CALL PXERBLA( ICTXT,
     $      'PCGBTRF: worksize error ',
     $      -INFO )
         ENDIF
         RETURN
      ENDIF
*
*     Pack params and positions into arrays for global consistency check
*
      PARAM_CHECK(  9, 1 ) = DESCA(5)
      PARAM_CHECK(  8, 1 ) = DESCA(4)
      PARAM_CHECK(  7, 1 ) = DESCA(3)
      PARAM_CHECK(  6, 1 ) = DESCA(1)
      PARAM_CHECK(  5, 1 ) = JA
      PARAM_CHECK(  4, 1 ) = BWU
      PARAM_CHECK(  3, 1 ) = BWL
      PARAM_CHECK(  2, 1 ) = N
      PARAM_CHECK(  1, 1 ) = IDUM3
*
      PARAM_CHECK(  9, 2 ) = 605
      PARAM_CHECK(  8, 2 ) = 604
      PARAM_CHECK(  7, 2 ) = 603
      PARAM_CHECK(  6, 2 ) = 601
      PARAM_CHECK(  5, 2 ) = 5
      PARAM_CHECK(  4, 2 ) = 3
      PARAM_CHECK(  3, 2 ) = 2
      PARAM_CHECK(  2, 2 ) = 1
      PARAM_CHECK(  1, 2 ) = 11
*
*     Want to find errors with MIN( ), so if no error, set it to a big
*     number. If there already is an error, multiply by the the
*     descriptor multiplier.
*
      IF( INFO.GE.0 ) THEN
         INFO = BIGNUM
      ELSE IF( INFO.LT.-DESCMULT ) THEN
         INFO = -INFO
      ELSE
         INFO = -INFO * DESCMULT
      END IF
*
*     Check consistency across processors
*
      CALL GLOBCHK( ICTXT, 9, PARAM_CHECK, 9,
     $              PARAM_CHECK( 1, 3 ), INFO )
*
*     Prepare output: set info = 0 if no error, and divide by DESCMULT
*     if error is not in a descriptor entry.
*
      IF( INFO.EQ.BIGNUM ) THEN
         INFO = 0
      ELSE IF( MOD( INFO, DESCMULT ) .EQ. 0 ) THEN
         INFO = -INFO / DESCMULT
      ELSE
         INFO = -INFO
      END IF
*
      IF( INFO.LT.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCGBTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*
*     Adjust addressing into matrix space to properly get into
*        the beginning part of the relevant data
*
      PART_OFFSET = NB*( (JA-1)/(NPCOL*NB) )
*
      IF ( (MYCOL-CSRC) .LT. (JA-PART_OFFSET-1)/NB ) THEN
         PART_OFFSET = PART_OFFSET + NB
      ENDIF
*
      IF ( MYCOL .LT. CSRC ) THEN
         PART_OFFSET = PART_OFFSET - NB
      ENDIF
*
*     Form a new BLACS grid (the "standard form" grid) with only procs
*        holding part of the matrix, of size 1xNP where NP is adjusted,
*        starting at csrc=0, with JA modified to reflect dropped procs.
*
*     First processor to hold part of the matrix:
*
      FIRST_PROC = MOD( ( JA-1 )/NB+CSRC, NPCOL )
*
*     Calculate new JA one while dropping off unused processors.
*
      JA_NEW = MOD( JA-1, NB ) + 1
*
*     Save and compute new value of NP
*
      NP_SAVE = NP
      NP = ( JA_NEW+N-2 )/NB + 1
*
*     Call utility routine that forms "standard-form" grid
*
      CALL RESHAPE( ICTXT, INT_ONE, ICTXT_NEW, INT_ONE,
     $              FIRST_PROC, INT_ONE, NP )
*
*     Use new context from standard grid as context.
*
      ICTXT_SAVE = ICTXT
      ICTXT = ICTXT_NEW
      DESCA_1XP( 2 ) = ICTXT_NEW
*
*     Get information about new grid.
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Drop out processors that do not have part of the matrix.
*
      IF( MYROW .LT. 0 ) THEN
         GOTO 1234
      ENDIF
*
*     ********************************
*     Values reused throughout routine
*
*     User-input value of partition size
*
      PART_SIZE = NB
*
*     Number of columns in each processor
*
      MY_NUM_COLS = NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL )
*
*     Offset in columns to beginning of main partition in each proc
*
      IF ( MYCOL .EQ. 0 ) THEN
        PART_OFFSET = PART_OFFSET+MOD( JA_NEW-1, PART_SIZE )
        MY_NUM_COLS = MY_NUM_COLS - MOD(JA_NEW-1, PART_SIZE )
      ENDIF
*
*     Offset in elements
*
      OFST = PART_OFFSET*LLDA
*
*     Size of main (or odd) partition in each processor
*
      ODD_SIZE = NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL )
*
*
*     Zero out space for fillin
*
      DO 10 I = 1, LAF_MIN
         AF( I ) = CZERO
   10 CONTINUE
*
      DO 9 J = 1, ODD_SIZE
         DO 8 I = 1, BW
            A( I+(J-1)*LLDA ) = CZERO
    8    CONTINUE
    9 CONTINUE
*
*     Begin main code
*
********************************************************************
*     PHASE 1: Local computation phase.
********************************************************************
*
*
*     Transfer triangle B_i of local matrix to next processor
*     for fillin. Overlap the send with the factorization of A_i.
*
      IF (MYCOL .LE. NPCOL-2) THEN
*
*     The last processor does not need to send anything.
*     BIPTR = location of triangle B_i in memory
         BIPTR = (NB-BW)*LLDA + 2*BW+1
*
         CALL CTRSD2D( ICTXT, 'U', 'N',
     $       MIN( BW, BWU+NUMROC( N, NB, MYCOL+1, 0, NPCOL ) ),
     $       BW, A(BIPTR), LLDA-1, 0, MYCOL+1)
*
      ENDIF
*
*     Factor main partition P_i A_i = L_i U_i on each processor
*
*     LBWL, LBWU: lower and upper bandwidth of local solver
*     Note that for MYCOL > 0 one has lower triangular blocks!
*     LM is the number of rows which is usually NB except for
*     MYCOL = 0 where it is BWU less and MYCOL=NPCOL-1 where it
*     is NR+BWU where NR is the number of columns on the last processor
*     Finally APTR is the pointer to the first element of A. As LAPACK
*     has a slightly different matrix format than Scalapack the pointer
*     has to be adjusted on processor MYCOL=0.
*
      IF (MYCOL .NE. 0) THEN
         LBWL = BW
         LBWU = 0
         APTR = 1
      ELSE
         LBWL = BWL
         LBWU = BWU
         APTR = 1+BWU
      ENDIF
*
      IF (MYCOL .NE. NPCOL-1) THEN
         LM = NB - LBWU
         LN = NB - BW
      ELSE IF (MYCOL .NE. 0) THEN
         LM = ODD_SIZE + BWU
         LN = MAX(ODD_SIZE-BW,0)
      ELSE
         LM = N
         LN = MAX( N-BW, 0 )
      ENDIF
*
      IF (LN .GT. 0) THEN
*
         CALL CGBTRF(LM,LN, LBWL,LBWU, A(APTR),LLDA, IPIV, INFO)
*
         IF( INFO.NE.0 ) THEN
            INFO = INFO + NB*MYCOL
            GO TO 90
         END IF
*
         NRHS = BW
         LDB = LLDA-1
*
*     Update the last BW columns of A_i (code modified from CGBTRS)
*
*     Only the eliminations of unknowns > LN-BW have an effect on
*     the last BW columns. Loop over them...
*
            DO 23 J = MAX(LN-BW+1,1), LN
*
               LMJ = MIN( LBWL, LM-J )
               LNJ = MIN( BW, J+BW-LN+APTR-1 )
*
               L = IPIV( J )
*
               JPTR = J-(LN+1)+2*BW+1-LBWL + LN*LLDA
*
               IF( L.NE.J ) THEN
*
*        Element (L,LN+1) is swapped with element (J,LN+1) etc
*        Furthermore, the elements in the same row are LDB=LLDA-1 apart
*        The complicated formulas are to cope with the banded
*          data format:
*
                  LPTR = L-(LN+1)+2*BW+1-LBWL + LN*LLDA
*
                  CALL CSWAP( LNJ, A(LPTR),LDB, A(JPTR), LDB )
*
               ENDIF
*
*              LPTR is the pointer to the beginning of the
*                 coefficients of L
*
               LPTR = BW+1+APTR + (J-1)*LLDA
*
               CALL CGERU(LMJ,LNJ,-CONE, A(LPTR),1, A(JPTR),LDB,
     $           A(JPTR+1),LDB)
   23       CONTINUE
*
      ENDIF
*
*      Compute spike fill-in, L_i F_i = P_i B_{i-1}
*
*      Receive triangle B_{i-1} from previous processor
*
      IF (MYCOL .GT. 0) THEN
*
         CALL CTRRV2D( ICTXT, 'U', 'N', MIN(BW, LM), BW, AF( 1 ),
     $        LM, 0, MYCOL-1)
*
*
*      Permutation and forward elimination (triang. solve)
*
         DO 24 J = 1, LN
*
            LMJ = MIN( LBWL, LM-J )
            L = IPIV( J )
*
            IF( L .NE. J ) THEN
*
                CALL CSWAP(NRHS,  AF(L), LM, AF(J), LM )
            ENDIF
*
            LPTR = BW+1+APTR + (J-1)*LLDA
*
            CALL CGERU( LMJ,NRHS, -CONE, A(LPTR),1,
     $           AF(J), LM, AF(J+1), LM)
*
   24   CONTINUE
*
      ENDIF
*
   90 CONTINUE
*
********************************************************************
*     PHASE 2: Formation and factorization of Reduced System.
********************************************************************
*
*     Define the initial dimensions of the diagonal blocks
*     The offdiagonal blocks (for MYCOL > 0) are of size BM by BW
*
      IF (MYCOL .NE. NPCOL-1) THEN
         BM = BW - LBWU
         BN = BW
      ELSE
         BM = MIN(BW,ODD_SIZE) + BWU
         BN = MIN(BW,ODD_SIZE)
      ENDIF
*
*     Pointer to first element of block bidiagonal matrix in AF
*     Leading dimension of block bidiagonal system
*
      BBPTR = (NB+BWU)*BW + 1
      LDBB   = 2*BW + BWU
*
*     Copy from A and AF into block bidiagonal matrix (tail of AF)
*
*     DBPTR = Pointer to diagonal blocks in A
      DBPTR = BW+1 + LBWU + LN*LLDA
*
      CALL CLAMOV('G',BM,BN, A(DBPTR),LLDA-1,
     $     AF(BBPTR + BW*LDBB),LDBB)
*
*     Zero out any junk entries that were copied
*
      DO 870 J=1, BM
         DO 880 I=J+LBWL, BM-1
            AF( BBPTR+BW*LDBB+(J-1)*LDBB+I ) = CZERO
  880    CONTINUE
  870 CONTINUE
*
      IF (MYCOL .NE. 0) THEN
*
*        ODPTR = Pointer to offdiagonal blocks in A
*
         ODPTR = LM-BM+1
         CALL CLAMOV('G',BM,BW, AF(ODPTR),LM,
     $        AF(BBPTR +2*BW*LDBB),LDBB)
      ENDIF
*
      IF (NPCOL.EQ.1) THEN
*
*        In this case the loop over the levels will not be
*        performed.
         CALL CGETRF( N-LN, N-LN, AF(BBPTR+BW*LDBB), LDBB,
     $        IPIV(LN+1), INFO)
*
      ENDIF
*
*     Loop over levels ... only occurs if npcol > 1
*
*     The two integers NPACT (nu. of active processors) and NPSTR
*     (stride between active processors) are used to control the
*     loop.
*
        NPACT = NPCOL
        NPSTR = 1
*
*       Begin loop over levels
*
  200   IF (NPACT .LE. 1) GOTO 300
*
*         Test if processor is active
*
          IF (MOD(MYCOL,NPSTR) .EQ. 0) THEN
*
*   Send/Receive blocks
*
*
             IF (MOD(MYCOL,2*NPSTR) .EQ. 0) THEN
*
*            This node will potentially do more work later
*
                NEICOL = MYCOL + NPSTR
*
                IF (NEICOL/NPSTR .LT. NPACT-1) THEN
                   BMN = BW
                ELSE IF (NEICOL/NPSTR .EQ. NPACT-1) THEN
                   ODD_N = NUMROC(N, NB, NPCOL-1, 0, NPCOL)
                   BMN = MIN(BW,ODD_N) + BWU
                ELSE
*
*                  Last processor skips to next level
                   GOTO 250
                ENDIF
*
*               BM1 = M for 1st block on proc pair, BM2 2nd block
*
                BM1 = BM
                BM2 = BMN
*
                IF (NEICOL/NPSTR .LE. NPACT-1 )THEN
*
                   CALL CGESD2D( ICTXT, BM, 2*BW, AF(BBPTR+BW*LDBB),
     $                  LDBB, 0, NEICOL )
*
                   CALL CGERV2D( ICTXT, BMN, 2*BW, AF(BBPTR+BM),
     $                  LDBB, 0, NEICOL)
*
                   IF( NPACT .EQ. 2 ) THEN
*
*                     Copy diagonal block to align whole system
*
                      CALL CLAMOV( 'G', BMN, BW, AF( BBPTR+BM ),
     $                  LDBB, AF( BBPTR+2*BW*LDBB+BM ), LDBB )
                   ENDIF
*
                ENDIF
*
             ELSE
*
*               This node stops work after this stage -- an extra copy
*               is required to make the odd and even frontal matrices
*               look identical
*
                NEICOL = MYCOL - NPSTR
*
                IF (NEICOL .EQ. 0) THEN
                   BMN = BW - BWU
                ELSE
                   BMN = BW
                ENDIF
*
                BM1 = BMN
                BM2 = BM
*
                CALL CGESD2D( ICTXT, BM, 2*BW, AF(BBPTR+BW*LDBB),
     $               LDBB, 0, NEICOL )
*
                CALL CLAMOV('G',BM, 2*BW, AF(BBPTR+BW*LDBB),LDBB,
     $               AF(BBPTR+BMN),LDBB)
*
                DO 31 J=BBPTR+2*BW*LDBB, BBPTR+3*BW*LDBB-1, LDBB
                   DO 32 I=0, LDBB-1
                      AF(I+J) = CZERO
   32              CONTINUE
   31           CONTINUE
*
                CALL CGERV2D( ICTXT, BMN, 2*BW, AF(BBPTR+BW*LDBB),
     $               LDBB, 0, NEICOL)
*
                IF( NPACT .EQ. 2 ) THEN
*
*                  Copy diagonal block to align whole system
*
                   CALL CLAMOV( 'G', BM, BW, AF( BBPTR+BMN ),
     $               LDBB, AF( BBPTR+2*BW*LDBB+BMN ), LDBB )
                ENDIF
*
             ENDIF
*
*            LU factorization with partial pivoting
*
             IF (NPACT .NE. 2) THEN
*
                CALL CGETRF(BM+BMN, BW, AF(BBPTR+BW*LDBB), LDBB,
     $               IPIV(LN+1), INFO)
*
*   Backsolve left side
*
                DO 301 J=BBPTR,BBPTR+BW*LDBB-1, LDBB
                   DO 302 I=0, BM1-1
                      AF(I+J) = CZERO
  302              CONTINUE
  301           CONTINUE
*
                CALL CLASWP(BW, AF(BBPTR), LDBB, 1, BW,
     $               IPIV(LN+1), 1)
*
                CALL CTRSM('L','L','N','U', BW, BW, CONE,
     $                AF(BBPTR+BW*LDBB), LDBB, AF(BBPTR), LDBB)
*
*               Use partial factors to update remainder
*
                CALL CGEMM( 'N', 'N', BM+BMN-BW, BW, BW,
     $                -CONE, AF(BBPTR+BW*LDBB+BW), LDBB,
     $                AF( BBPTR ), LDBB, CONE,
     $                AF( BBPTR+BW ), LDBB )
*
*   Backsolve right side
*
                NRHS = BW
*
                CALL CLASWP(NRHS, AF(BBPTR+2*BW*LDBB), LDBB, 1, BW,
     $               IPIV(LN+1), 1)
*
                CALL CTRSM('L','L','N','U', BW, NRHS, CONE,
     $               AF(BBPTR+BW*LDBB), LDBB, AF(BBPTR+2*BW*LDBB), LDBB)
*
*               Use partial factors to update remainder
*
                CALL CGEMM( 'N', 'N', BM+BMN-BW, NRHS, BW,
     $                -CONE, AF(BBPTR+BW*LDBB+BW), LDBB,
     $                AF( BBPTR+2*BW*LDBB ), LDBB, CONE,
     $                AF( BBPTR+2*BW*LDBB+BW ), LDBB )
*
*
*     Test if processor is active in next round
*
                IF (MOD(MYCOL,2*NPSTR) .EQ. 0) THEN
*
*                  Reset BM
*
                   BM = BM1+BM2-BW
*
*                  Local copying in the block bidiagonal area
*
*
                   CALL CLAMOV('G',BM,BW,
     $                  AF(BBPTR+BW),
     $                  LDBB, AF(BBPTR+BW*LDBB), LDBB)
                   CALL CLAMOV('G',BM,BW,
     $                  AF(BBPTR+2*BW*LDBB+BW),
     $                  LDBB, AF(BBPTR+2*BW*LDBB), LDBB)
*
*                  Zero out space that held original copy
*
                   DO 1020 J=0, BW-1
                      DO 1021 I=0, BM-1
                         AF(BBPTR+2*BW*LDBB+BW+J*LDBB+I) = CZERO
 1021                 CONTINUE
 1020              CONTINUE
*
                ENDIF
*
             ELSE
*
*               Factor the final 2 by 2 block matrix
*
                CALL CGETRF(BM+BMN,BM+BMN, AF(BBPTR+BW*LDBB), LDBB,
     $               IPIV(LN+1), INFO)
             ENDIF
*
          ENDIF
*
*        Last processor in an odd-sized NPACT skips to here
*
  250    CONTINUE
*
         NPACT = (NPACT + 1)/2
         NPSTR = NPSTR * 2
         GOTO 200
*
  300 CONTINUE
*     End loop over levels
*
 1000 CONTINUE
*     If error was found in Phase 1, processors jump here.
*
*     Free BLACS space used to hold standard-form grid.
*
      ICTXT = ICTXT_SAVE
      IF( ICTXT.NE.ICTXT_NEW ) THEN
         CALL BLACS_GRIDEXIT( ICTXT_NEW )
      END IF
*
 1234 CONTINUE
*     If this processor did not hold part of the grid it
*        jumps here.
*
*     Restore saved input parameters
*
      ICTXT = ICTXT_SAVE
      NP = NP_SAVE
*
*     Output worksize
*
      WORK( 1 ) = WORK_SIZE_MIN
*
*         Make INFO consistent across processors
*
          CALL IGAMX2D( ICTXT, 'A', ' ', 1, 1, INFO, 1, INFO, INFO,
     $              -1, 0, 0 )
*
          IF( MYCOL.EQ.0 ) THEN
             CALL IGEBS2D( ICTXT, 'A', ' ', 1, 1, INFO, 1 )
          ELSE
             CALL IGEBR2D( ICTXT, 'A', ' ', 1, 1, INFO, 1, 0, 0 )
          ENDIF
*
*
      RETURN
*
*     End of PCGBTRF
*
      END
*