File: pcgetrf.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (311 lines) | stat: -rw-r--r-- 11,558 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
      SUBROUTINE PCGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 25, 2001
*
*     .. Scalar Arguments ..
      INTEGER            IA, INFO, JA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), IPIV( * )
      COMPLEX            A( * )
*     ..
*
*  Purpose
*  =======
*
*  PCGETRF computes an LU factorization of a general M-by-N distributed
*  matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with
*  row interchanges.
*
*  The factorization has the form sub( A ) = P * L * U, where P is a
*  permutation matrix, L is lower triangular with unit diagonal ele-
*  ments (lower trapezoidal if m > n), and U is upper triangular
*  (upper trapezoidal if m < n). L and U are stored in sub( A ).
*
*  This is the right-looking Parallel Level 3 BLAS version of the
*  algorithm.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  This routine requires square block decomposition ( MB_A = NB_A ).
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the M-by-N
*          distributed matrix sub( A ) to be factored. On exit, this
*          array contains the local pieces of the factors L and U from
*          the factorization sub( A ) = P*L*U; the unit diagonal ele-
*          ments of L are not stored.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local output) INTEGER array, dimension ( LOCr(M_A)+MB_A )
*          This array contains the pivoting information.
*          IPIV(i) -> The global row local row i was swapped with.
*          This array is tied to the distributed matrix A.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = K, U(IA+K-1,JA+K-1) is exactly zero.
*                The factorization has been completed, but the factor U
*                is exactly singular, and division by zero will occur if
*                it is used to solve a system of equations.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX            ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          COLBTOP, COLCTOP, ROWBTOP
      INTEGER            I, ICOFF, ICTXT, IINFO, IN, IROFF, J, JB, JN,
     $                   MN, MYCOL, MYROW, NPCOL, NPROW
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 1 ), IDUM2( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, IGAMN2D, PCHK1MAT,
     $                   PB_TOPGET, PB_TOPSET, PCGEMM, PCGETF2,
     $                   PCLASWP, PCTRSM, PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            ICEIL
      EXTERNAL           ICEIL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(600+CTXT_)
      ELSE
         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
         IF( INFO.EQ.0 ) THEN
            IROFF = MOD( IA-1, DESCA( MB_ ) )
            ICOFF = MOD( JA-1, DESCA( NB_ ) )
            IF( IROFF.NE.0 ) THEN
               INFO = -4
            ELSE IF( ICOFF.NE.0 ) THEN
               INFO = -5
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(600+NB_)
            END IF
         END IF
         CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, 0, IDUM1,
     $                  IDUM2, INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCGETRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( DESCA( M_ ).EQ.1 ) THEN
         IPIV( 1 ) = 1
         RETURN
      ELSE IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         RETURN
      END IF
*
*     Split-ring topology for the communication along process rows
*
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
      CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', ' ' )
*
*     Handle the first block of columns separately
*
      MN = MIN( M, N )
      IN = MIN( ICEIL( IA, DESCA( MB_ ) )*DESCA( MB_ ), IA+M-1 )
      JN = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+MN-1 )
      JB = JN - JA + 1
*
*     Factor diagonal and subdiagonal blocks and test for exact
*     singularity.
*
      CALL PCGETF2( M, JB, A, IA, JA, DESCA, IPIV, INFO )
*
      IF( JB+1.LE.N ) THEN
*
*        Apply interchanges to columns JN+1:JA+N-1.
*
         CALL PCLASWP( 'Forward', 'Rows', N-JB, A, IA, JN+1, DESCA,
     $                 IA, IN, IPIV )
*
*        Compute block row of U.
*
         CALL PCTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
     $                N-JB, ONE, A, IA, JA, DESCA, A, IA, JN+1, DESCA )
*
         IF( JB+1.LE.M ) THEN
*
*           Update trailing submatrix.
*
            CALL PCGEMM( 'No transpose', 'No transpose', M-JB, N-JB, JB,
     $                   -ONE, A, IN+1, JA, DESCA, A, IA, JN+1, DESCA,
     $                   ONE, A, IN+1, JN+1, DESCA )
*
         END IF
      END IF
*
*     Loop over the remaining blocks of columns.
*
      DO 10 J = JN+1, JA+MN-1, DESCA( NB_ )
         JB = MIN( MN-J+JA, DESCA( NB_ ) )
         I = IA + J - JA
*
*        Factor diagonal and subdiagonal blocks and test for exact
*        singularity.
*
         CALL PCGETF2( M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO )
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO + J - JA
*
*        Apply interchanges to columns JA:J-JA.
*
         CALL PCLASWP( 'Forward', 'Rowwise', J-JA, A, IA, JA, DESCA,
     $                 I, I+JB-1, IPIV )
*
         IF( J-JA+JB+1.LE.N ) THEN
*
*           Apply interchanges to columns J+JB:JA+N-1.
*
            CALL PCLASWP( 'Forward', 'Rowwise', N-J-JB+JA, A, IA, J+JB,
     $                    DESCA, I, I+JB-1, IPIV )
*
*           Compute block row of U.
*
            CALL PCTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
     $                   N-J-JB+JA, ONE, A, I, J, DESCA, A, I, J+JB,
     $                   DESCA )
*
            IF( J-JA+JB+1.LE.M ) THEN
*
*              Update trailing submatrix.
*
               CALL PCGEMM( 'No transpose', 'No transpose', M-J-JB+JA,
     $                      N-J-JB+JA, JB, -ONE, A, I+JB, J, DESCA, A,
     $                      I, J+JB, DESCA, ONE, A, I+JB, J+JB, DESCA )
*
            END IF
         END IF
*
   10 CONTINUE
*
      IF( INFO.EQ.0 )
     $   INFO = MN + 1
      CALL IGAMN2D( ICTXT, 'Rowwise', ' ', 1, 1, INFO, 1, IDUM1, IDUM2,
     $              -1, -1, MYCOL )
      IF( INFO.EQ.MN+1 )
     $   INFO = 0
*
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
*
      RETURN
*
*     End of PCGETRF
*
      END