1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
SUBROUTINE PCHEEV( JOBZ, UPLO, N, A, IA, JA, DESCA, W, Z, IZ, JZ,
$ DESCZ, WORK, LWORK, RWORK, LRWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* August 14, 2001
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER IA, INFO, IZ, JA, JZ, LRWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCZ( * )
REAL RWORK( * ), W( * )
COMPLEX A( * ), WORK( * ), Z( * )
* ..
*
* Purpose
* =======
*
* PCHEEV computes selected eigenvalues and, optionally, eigenvectors
* of a real Hermitian matrix A by calling the recommended sequence
* of ScaLAPACK routines.
*
* In its present form, PCHEEV assumes a homogeneous system and makes
* only spot checks of the consistency of the eigenvalues across the
* different processes. Because of this, it is possible that a
* heterogeneous system may return incorrect results without any error
* messages.
*
* Notes
* =====
* A description vector is associated with each 2D block-cyclicly dis-
* tributed matrix. This vector stores the information required to
* establish the mapping between a matrix entry and its corresponding
* process and memory location.
*
* In the following comments, the character _ should be read as
* "of the distributed matrix". Let A be a generic term for any 2D
* block cyclicly distributed matrix. Its description vector is DESCA:
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_) The descriptor type.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the distributed
* matrix A.
* N_A (global) DESCA( N_ ) The number of columns in the distri-
* buted matrix A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of A.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of A.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the matrix A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of A is distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array storing the local blocks of the
* distributed matrix A.
* LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*
* Arguments
* =========
*
* NP = the number of rows local to a given process.
* NQ = the number of columns local to a given process.
*
* JOBZ (global input) CHARACTER*1
* Specifies whether or not to compute the eigenvectors:
* = 'N': Compute eigenvalues only.
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (global input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (local input/workspace) block cyclic COMPLEX array,
* global dimension (N, N), local dimension ( LLD_A,
* LOCc(JA+N-1) )
*
* On entry, the Hermitian matrix A. If UPLO = 'U', only the
* upper triangular part of A is used to define the elements of
* the Hermitian matrix. If UPLO = 'L', only the lower
* triangular part of A is used to define the elements of the
* Hermitian matrix.
*
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
* If DESCA( CTXT_ ) is incorrect, PCHEEV cannot guarantee
* correct error reporting.
*
* W (global output) REAL array, dimension (N)
* If INFO=0, the eigenvalues in ascending order.
*
* Z (local output) COMPLEX array,
* global dimension (N, N),
* local dimension (LLD_Z, LOCc(JZ+N-1))
* If JOBZ = 'V', then on normal exit the first M columns of Z
* contain the orthonormal eigenvectors of the matrix
* corresponding to the selected eigenvalues.
* If JOBZ = 'N', then Z is not referenced.
*
* IZ (global input) INTEGER
* Z's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JZ (global input) INTEGER
* Z's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
* DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
* WORK (local workspace/output) COMPLEX array,
* dimension (LWORK)
* On output, WORK(1) returns the workspace needed to guarantee
* completion. If the input parameters are incorrect, WORK(1)
* may also be incorrect.
*
* If JOBZ='N' WORK(1) = minimal workspace for eigenvalues only.
* If JOBZ='V' WORK(1) = minimal workspace required to
* generate all the eigenvectors.
*
*
* LWORK (local input) INTEGER
* See below for definitions of variables used to define LWORK.
* If no eigenvectors are requested (JOBZ = 'N') then
* LWORK >= MAX( NB*( NP0+1 ), 3 ) +3*N
* If eigenvectors are requested (JOBZ = 'V' ) then
* the amount of workspace required:
* LWORK >= (NP0 + NQ0 + NB)*NB + 3*N + N^2
*
* Variable definitions:
* NB = DESCA( MB_ ) = DESCA( NB_ ) =
* DESCZ( MB_ ) = DESCZ( NB_ )
* NP0 = NUMROC( NN, NB, 0, 0, NPROW )
* NQ0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPCOL )
*
* If LWORK = -1, the LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* size for the WORK array. The required workspace is returned
* as the first element of WORK and no error message is issued
* by PXERBLA.
*
* RWORK (local workspace/output) COMPLEX array,
* dimension (LRWORK)
* On output RWORK(1) returns the
* REAL workspace needed to
* guarantee completion. If the input parameters are incorrect,
* RWORK(1) may also be incorrect.
*
* LRWORK (local input) INTEGER
* Size of RWORK array.
* If eigenvectors are desired (JOBZ = 'V') then
* LRWORK >= 2*N + 2*N-2
* If eigenvectors are not desired (JOBZ = 'N') then
* LRWORK >= 2*N
*
* If LRWORK = -1, the LRWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* size for the RWORK array. The required workspace is returned
* as the first element of RWORK and no error message is issued
* by PXERBLA.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: If INFO = 1 through N, the i(th) eigenvalue did not
* converge in CSTEQR2 after a total of 30*N iterations.
* If INFO = N+1, then PCHEEV has detected heterogeneity
* by finding that eigenvalues were not identical across
* the process grid. In this case, the accuracy of
* the results from PCHEEV cannot be guaranteed.
*
* Alignment requirements
* ======================
*
* The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
* must verify some alignment properties, namely the following
* expressions should be true:
*
* ( MB_A.EQ.NB_A.EQ.MB_Z .AND. IROFFA.EQ.IROFFZ .AND. IROFFA.EQ.0 .AND.
* IAROW.EQ.IZROW )
* where
* IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
*
* =====================================================================
*
* Version 1.4 limitations:
* DESCA(MB_) = DESCA(NB_)
* DESCA(M_) = DESCZ(M_)
* DESCA(N_) = DESCZ(N_)
* DESCA(MB_) = DESCZ(MB_)
* DESCA(NB_) = DESCZ(NB_)
* DESCA(RSRC_) = DESCZ(RSRC_)
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
INTEGER ITHVAL
PARAMETER ( ITHVAL = 10 )
* ..
* .. Local Scalars ..
LOGICAL LOWER, WANTZ
INTEGER CONTEXTC, CSRC_A, I, IACOL, IAROW, ICOFFA,
$ IINFO, INDD, INDE, INDRD, INDRE, INDRWORK,
$ INDTAU, INDWORK, INDWORK2, IROFFA, IROFFZ,
$ ISCALE, IZROW, J, K, LDC, LLRWORK, LLWORK,
$ LRMIN, LRWMIN, LWMIN, MB_A, MB_Z, MYCOL,
$ MYPCOLC, MYPROWC, MYROW, NB, NB_A, NB_Z, NP0,
$ NPCOL, NPCOLC, NPROCS, NPROW, NPROWC, NQ0, NRC,
$ RSIZECSTEQR2, RSRC_A, RSRC_Z, SIZECSTEQR2,
$ SIZEPCHETRD, SIZEPCUNMTR
REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. Local Arrays ..
INTEGER DESCQR( 10 ), IDUM1( 3 ), IDUM2( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER INDXG2P, NUMROC, SL_GRIDRESHAPE
REAL PCLANHE, PSLAMCH
EXTERNAL LSAME, INDXG2P, NUMROC, SL_GRIDRESHAPE,
$ PCLANHE, PSLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDEXIT, BLACS_GRIDINFO, CHK1MAT,
$ CSTEQR2, DESCINIT, PCELGET, PCGEMR2D, PCHETRD,
$ PCHK1MAT, PCHK2MAT, PCLASCL, PCLASET, PCUNMTR,
$ PXERBLA, SCOPY, SGAMN2D, SGAMX2D, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, ICHAR, INT, MAX, MIN, MOD, REAL,
$ SQRT
* ..
* .. Executable Statements ..
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* Quick return
*
IF( N.EQ.0 )
$ RETURN
*
* Test the input arguments.
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
INFO = 0
*
* Initialize pointer to some safe value
*
INDTAU = 1
INDD = 1
INDE = 1
INDWORK = 1
INDWORK2 = 1
*
INDRE = 1
INDRD = 1
INDRWORK = 1
*
WANTZ = LSAME( JOBZ, 'V' )
IF( NPROW.EQ.-1 ) THEN
INFO = -( 700+CTXT_ )
ELSE IF( WANTZ ) THEN
IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 1200+CTXT_ )
END IF
END IF
IF( INFO.EQ.0 ) THEN
CALL CHK1MAT( N, 3, N, 3, IA, JA, DESCA, 7, INFO )
IF( WANTZ )
$ CALL CHK1MAT( N, 3, N, 3, IZ, JZ, DESCZ, 12, INFO )
*
IF( INFO.EQ.0 ) THEN
*
* Get machine constants.
*
SAFMIN = PSLAMCH( DESCA( CTXT_ ), 'Safe minimum' )
EPS = PSLAMCH( DESCA( CTXT_ ), 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
NPROCS = NPROW*NPCOL
NB_A = DESCA( NB_ )
MB_A = DESCA( MB_ )
NB = NB_A
LOWER = LSAME( UPLO, 'L' )
*
RSRC_A = DESCA( RSRC_ )
CSRC_A = DESCA( CSRC_ )
IROFFA = MOD( IA-1, MB_A )
ICOFFA = MOD( JA-1, NB_A )
IAROW = INDXG2P( 1, NB_A, MYROW, RSRC_A, NPROW )
IACOL = INDXG2P( 1, MB_A, MYCOL, CSRC_A, NPCOL )
NP0 = NUMROC( N+IROFFA, NB, MYROW, IAROW, NPROW )
NQ0 = NUMROC( N+ICOFFA, NB, MYCOL, IACOL, NPCOL )
IF( WANTZ ) THEN
NB_Z = DESCZ( NB_ )
MB_Z = DESCZ( MB_ )
RSRC_Z = DESCZ( RSRC_ )
IROFFZ = MOD( IZ-1, MB_A )
IZROW = INDXG2P( 1, NB_A, MYROW, RSRC_Z, NPROW )
ELSE
IROFFZ = 0
IZROW = 0
END IF
*
* COMPLEX work space for PCHETRD
*
CALL PCHETRD( UPLO, N, A, IA, JA, DESCA, RWORK( INDD ),
$ RWORK( INDE ), WORK( INDTAU ),
$ WORK( INDWORK ), -1, IINFO )
SIZEPCHETRD = INT( ABS( WORK( 1 ) ) )
*
* COMPLEX work space for PCUNMTR
*
IF( WANTZ ) THEN
CALL PCUNMTR( 'L', UPLO, 'N', N, N, A, IA, JA, DESCA,
$ WORK( INDTAU ), Z, IZ, JZ, DESCZ,
$ WORK( INDWORK ), -1, IINFO )
SIZEPCUNMTR = INT( ABS( WORK( 1 ) ) )
ELSE
SIZEPCUNMTR = 0
END IF
*
* REAL work space for CSTEQR2
*
IF( WANTZ ) THEN
RSIZECSTEQR2 = MAX( 1, 2*N-2 )
ELSE
RSIZECSTEQR2 = 0
END IF
*
* Initialize the context of the single column distributed
* matrix required by CSTEQR2. This specific distribution
* allows each process to do 1/pth of the work updating matrix
* Q during CSTEQR2 and achieve some parallelization to an
* otherwise serial subroutine.
*
LDC = 0
IF( WANTZ ) THEN
CONTEXTC = SL_GRIDRESHAPE( DESCA( CTXT_ ), 0, 1, 1,
$ NPROCS, 1 )
CALL BLACS_GRIDINFO( CONTEXTC, NPROWC, NPCOLC, MYPROWC,
$ MYPCOLC )
NRC = NUMROC( N, NB_A, MYPROWC, 0, NPROCS )
LDC = MAX( 1, NRC )
CALL DESCINIT( DESCQR, N, N, NB, NB, 0, 0, CONTEXTC, LDC,
$ INFO )
END IF
*
* COMPLEX work space for CSTEQR2
*
IF( WANTZ ) THEN
SIZECSTEQR2 = N*LDC
ELSE
SIZECSTEQR2 = 0
END IF
*
* Set up pointers into the WORK array
*
INDTAU = 1
INDD = INDTAU + N
INDE = INDD + N
INDWORK = INDE + N
INDWORK2 = INDWORK + N*LDC
LLWORK = LWORK - INDWORK + 1
*
* Set up pointers into the RWORK array
*
INDRE = 1
INDRD = INDRE + N
INDRWORK = INDRD + N
LLRWORK = LRWORK - INDRWORK + 1
*
* Compute the total amount of space needed
*
LRWMIN = 2*N + RSIZECSTEQR2
LWMIN = 3*N + MAX( SIZEPCHETRD, SIZEPCUNMTR, SIZECSTEQR2 )
*
END IF
IF( INFO.EQ.0 ) THEN
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -2
ELSE IF( LWORK.LT.LWMIN .AND. LWORK.NE.-1 ) THEN
INFO = -14
ELSE IF( LRWORK.LT.LRWMIN .AND. LRWORK.NE.-1 ) THEN
INFO = -16
ELSE IF( IROFFA.NE.0 ) THEN
INFO = -5
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 700+NB_ )
END IF
IF( WANTZ ) THEN
IF( IROFFA.NE.IROFFZ ) THEN
INFO = -10
ELSE IF( IAROW.NE.IZROW ) THEN
INFO = -10
ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
INFO = -( 1200+M_ )
ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
INFO = -( 1200+N_ )
ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 1200+MB_ )
ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 1200+NB_ )
ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
INFO = -( 1200+RSRC_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 1200+CTXT_ )
END IF
END IF
END IF
IF( WANTZ ) THEN
IDUM1( 1 ) = ICHAR( 'V' )
ELSE
IDUM1( 1 ) = ICHAR( 'N' )
END IF
IDUM2( 1 ) = 1
IF( LOWER ) THEN
IDUM1( 2 ) = ICHAR( 'L' )
ELSE
IDUM1( 2 ) = ICHAR( 'U' )
END IF
IDUM2( 2 ) = 2
IF( LWORK.EQ.-1 ) THEN
IDUM1( 3 ) = -1
ELSE
IDUM1( 3 ) = 1
END IF
IDUM2( 3 ) = 3
IF( WANTZ ) THEN
CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 7, N, 3, N, 3, IZ,
$ JZ, DESCZ, 12, 3, IDUM1, IDUM2, INFO )
ELSE
CALL PCHK1MAT( N, 3, N, 3, IA, JA, DESCA, 7, 3, IDUM1,
$ IDUM2, INFO )
END IF
WORK( 1 ) = CMPLX( LWMIN )
RWORK( 1 ) = REAL( LRWMIN )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCA( CTXT_ ), 'PCHEEV', -INFO )
IF( WANTZ )
$ CALL BLACS_GRIDEXIT( CONTEXTC )
RETURN
ELSE IF( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 ) THEN
IF( WANTZ )
$ CALL BLACS_GRIDEXIT( CONTEXTC )
RETURN
END IF
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
*
ANRM = PCLANHE( 'M', UPLO, N, A, IA, JA, DESCA,
$ RWORK( INDRWORK ) )
*
*
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
*
IF( ISCALE.EQ.1 ) THEN
CALL PCLASCL( UPLO, ONE, SIGMA, N, N, A, IA, JA, DESCA, IINFO )
END IF
*
* Reduce Hermitian matrix to tridiagonal form.
*
CALL PCHETRD( UPLO, N, A, IA, JA, DESCA, RWORK( INDRD ),
$ RWORK( INDRE ), WORK( INDTAU ), WORK( INDWORK ),
$ LLWORK, IINFO )
*
* Copy the values of D, E to all processes.
*
DO 10 I = 1, N
CALL PCELGET( 'A', ' ', WORK( INDD+I-1 ), A, I+IA-1, I+JA-1,
$ DESCA )
RWORK( INDRD+I-1 ) = REAL( WORK( INDD+I-1 ) )
10 CONTINUE
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 I = 1, N - 1
CALL PCELGET( 'A', ' ', WORK( INDE+I-1 ), A, I+IA-1, I+JA,
$ DESCA )
RWORK( INDRE+I-1 ) = REAL( WORK( INDE+I-1 ) )
20 CONTINUE
ELSE
DO 30 I = 1, N - 1
CALL PCELGET( 'A', ' ', WORK( INDE+I-1 ), A, I+IA, I+JA-1,
$ DESCA )
RWORK( INDRE+I-1 ) = REAL( WORK( INDE+I-1 ) )
30 CONTINUE
END IF
*
IF( WANTZ ) THEN
*
CALL PCLASET( 'Full', N, N, CZERO, CONE, WORK( INDWORK ), 1, 1,
$ DESCQR )
*
* CSTEQR2 is a modified version of LAPACK's CSTEQR. The
* modifications allow each process to perform partial updates
* to matrix Q.
*
CALL CSTEQR2( 'I', N, RWORK( INDRD ), RWORK( INDRE ),
$ WORK( INDWORK ), LDC, NRC, RWORK( INDRWORK ),
$ INFO )
*
CALL PCGEMR2D( N, N, WORK( INDWORK ), 1, 1, DESCQR, Z, IA, JA,
$ DESCZ, CONTEXTC )
*
CALL PCUNMTR( 'L', UPLO, 'N', N, N, A, IA, JA, DESCA,
$ WORK( INDTAU ), Z, IZ, JZ, DESCZ,
$ WORK( INDWORK ), LLWORK, IINFO )
*
ELSE
*
CALL CSTEQR2( 'N', N, RWORK( INDRD ), RWORK( INDRE ),
$ WORK( INDWORK ), 1, 1, RWORK( INDRWORK ), INFO )
END IF
*
* Copy eigenvalues from workspace to output array
*
CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
CALL SSCAL( N, ONE / SIGMA, W, 1 )
END IF
*
WORK( 1 ) = REAL( LWMIN )
*
* Free up resources
*
IF( WANTZ ) THEN
CALL BLACS_GRIDEXIT( CONTEXTC )
END IF
*
* Compare every ith eigenvalue, or all if there are only a few,
* across the process grid to check for heterogeneity.
*
IF( N.LE.ITHVAL ) THEN
J = N
K = 1
ELSE
J = N / ITHVAL
K = ITHVAL
END IF
*
LRMIN = INT( RWORK( 1 ) )
INDTAU = 0
INDE = INDTAU + J
DO 40 I = 1, J
RWORK( I+INDTAU ) = W( ( I-1 )*K+1 )
RWORK( I+INDE ) = W( ( I-1 )*K+1 )
40 CONTINUE
*
CALL SGAMN2D( DESCA( CTXT_ ), 'All', ' ', J, 1, RWORK( 1+INDTAU ),
$ J, 1, 1, -1, -1, 0 )
CALL SGAMX2D( DESCA( CTXT_ ), 'All', ' ', J, 1, RWORK( 1+INDE ),
$ J, 1, 1, -1, -1, 0 )
*
DO 50 I = 1, J
IF( INFO.EQ.0 .AND. ( RWORK( I+INDTAU )-RWORK( I+INDE ).NE.
$ ZERO ) ) THEN
INFO = N + 1
END IF
50 CONTINUE
RWORK( 1 ) = LRMIN
*
RETURN
*
* End of PCHEEV
*
END
|