File: pchegvx.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (836 lines) | stat: -rw-r--r-- 35,819 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
      SUBROUTINE PCHEGVX( IBTYPE, JOBZ, RANGE, UPLO, N, A, IA, JA,
     $                    DESCA, B, IB, JB, DESCB, VL, VU, IL, IU,
     $                    ABSTOL, M, NZ, W, ORFAC, Z, IZ, JZ, DESCZ,
     $                    WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,
     $                    IFAIL, ICLUSTR, GAP, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     October 15, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IA, IB, IBTYPE, IL, INFO, IU, IZ, JA, JB, JZ,
     $                   LIWORK, LRWORK, LWORK, M, N, NZ
      REAL               ABSTOL, ORFAC, VL, VU
*     ..
*     .. Array Arguments ..
*
      INTEGER            DESCA( * ), DESCB( * ), DESCZ( * ),
     $                   ICLUSTR( * ), IFAIL( * ), IWORK( * )
      REAL               GAP( * ), RWORK( * ), W( * )
      COMPLEX            A( * ), B( * ), WORK( * ), Z( * )
*     ..
*
*  Purpose
*
*  =======
*
*  PCHEGVX computes all the eigenvalues, and optionally,
*  the eigenvectors
*  of a complex generalized Hermitian-definite eigenproblem, of the form
*  sub( A )*x=(lambda)*sub( B )*x,  sub( A )*sub( B )x=(lambda)*x,  or
*  sub( B )*sub( A )*x=(lambda)*x.
*  Here sub( A ) denoting A( IA:IA+N-1, JA:JA+N-1 ) is assumed to be
*  Hermitian, and sub( B ) denoting B( IB:IB+N-1, JB:JB+N-1 ) is assumed
*  to be Hermitian positive definite.
*
*  Notes
*  =====
*
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  Arguments
*  =========
*
*  IBTYPE   (global input) INTEGER
*          Specifies the problem type to be solved:
*          = 1:  sub( A )*x = (lambda)*sub( B )*x
*          = 2:  sub( A )*sub( B )*x = (lambda)*x
*          = 3:  sub( B )*sub( A )*x = (lambda)*x
*
*  JOBZ    (global input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (global input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the interval [VL,VU] will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*  UPLO    (global input) CHARACTER*1
*          = 'U':  Upper triangles of sub( A ) and sub( B ) are stored;
*          = 'L':  Lower triangles of sub( A ) and sub( B ) are stored.
*
*  N       (global input) INTEGER
*          The order of the matrices sub( A ) and sub( B ).  N >= 0.
*
*  A       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          N-by-N Hermitian distributed matrix sub( A ). If UPLO = 'U',
*          the leading N-by-N upper triangular part of sub( A ) contains
*          the upper triangular part of the matrix.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of sub( A ) contains
*          the lower triangular part of the matrix.
*
*          On exit, if JOBZ = 'V', then if INFO = 0, sub( A ) contains
*          the distributed matrix Z of eigenvectors.  The eigenvectors
*          are normalized as follows:
*          if IBTYPE = 1 or 2, Z**H*sub( B )*Z = I;
*          if IBTYPE = 3, Z**H*inv( sub( B ) )*Z = I.
*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
*          or the lower triangle (if UPLO='L') of sub( A ), including
*          the diagonal, is destroyed.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*          If DESCA( CTXT_ ) is incorrect, PCHEGVX cannot guarantee
*          correct error reporting.
*
*  B       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_B, LOCc(JB+N-1)).
*          On entry, this array contains the local pieces of the
*          N-by-N Hermitian distributed matrix sub( B ). If UPLO = 'U',
*          the leading N-by-N upper triangular part of sub( B ) contains
*          the upper triangular part of the matrix.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of sub( B ) contains
*          the lower triangular part of the matrix.
*
*          On exit, if INFO <= N, the part of sub( B ) containing the
*          matrix is overwritten by the triangular factor U or L from
*          the Cholesky factorization sub( B ) = U**H*U or
*          sub( B ) = L*L**H.
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*          DESCB( CTXT_ ) must equal DESCA( CTXT_ )
*
*  VL      (global input) REAL
*          If RANGE='V', the lower bound of the interval to be searched
*          for eigenvalues.  Not referenced if RANGE = 'A' or 'I'.
*
*  VU      (global input) REAL
*          If RANGE='V', the upper bound of the interval to be searched
*          for eigenvalues.  Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          smallest eigenvalue to be returned.  IL >= 1.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  IU      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          largest eigenvalue to be returned.  min(IL,N) <= IU <= N.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (global input) REAL
*          If JOBZ='V', setting ABSTOL to PSLAMCH( CONTEXT, 'U') yields
*          the most orthogonal eigenvectors.
*
*          The absolute error tolerance for the eigenvalues.
*          An approximate eigenvalue is accepted as converged
*          when it is determined to lie in an interval [a,b]
*          of width less than or equal to
*
*                  ABSTOL + EPS *   max( |a|,|b| ) ,
*
*          where EPS is the machine precision.  If ABSTOL is less than
*          or equal to zero, then EPS*norm(T) will be used in its place,
*          where norm(T) is the 1-norm of the tridiagonal matrix
*          obtained by reducing A to tridiagonal form.
*
*          Eigenvalues will be computed most accurately when ABSTOL is
*          set to twice the underflow threshold 2*PSLAMCH('S') not zero.
*          If this routine returns with ((MOD(INFO,2).NE.0) .OR.
*          (MOD(INFO/8,2).NE.0)), indicating that some eigenvalues or
*          eigenvectors did not converge, try setting ABSTOL to
*          2*PSLAMCH('S').
*
*          See "Computing Small Singular Values of Bidiagonal Matrices
*          with Guaranteed High Relative Accuracy," by Demmel and
*          Kahan, LAPACK Working Note #3.
*
*          See "On the correctness of Parallel Bisection in Floating
*          Point" by Demmel, Dhillon and Ren, LAPACK Working Note #70
*
*  M       (global output) INTEGER
*          Total number of eigenvalues found.  0 <= M <= N.
*
*  NZ      (global output) INTEGER
*          Total number of eigenvectors computed.  0 <= NZ <= M.
*          The number of columns of Z that are filled.
*          If JOBZ .NE. 'V', NZ is not referenced.
*          If JOBZ .EQ. 'V', NZ = M unless the user supplies
*          insufficient space and PCHEGVX is not able to detect this
*          before beginning computation.  To get all the eigenvectors
*          requested, the user must supply both sufficient
*          space to hold the eigenvectors in Z (M .LE. DESCZ(N_))
*          and sufficient workspace to compute them.  (See LWORK below.)
*          PCHEGVX is always able to detect insufficient space without
*          computation unless RANGE .EQ. 'V'.
*
*  W       (global output) REAL array, dimension (N)
*          On normal exit, the first M entries contain the selected
*          eigenvalues in ascending order.
*
*  ORFAC   (global input) REAL
*          Specifies which eigenvectors should be reorthogonalized.
*          Eigenvectors that correspond to eigenvalues which are within
*          tol=ORFAC*norm(A) of each other are to be reorthogonalized.
*          However, if the workspace is insufficient (see LWORK),
*          tol may be decreased until all eigenvectors to be
*          reorthogonalized can be stored in one process.
*          No reorthogonalization will be done if ORFAC equals zero.
*          A default value of 10^-3 is used if ORFAC is negative.
*          ORFAC should be identical on all processes.
*
*  Z       (local output) COMPLEX array,
*          global dimension (N, N),
*          local dimension ( LLD_Z, LOCc(JZ+N-1) )
*          If JOBZ = 'V', then on normal exit the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix
*          corresponding to the selected eigenvalues.  If an eigenvector
*          fails to converge, then that column of Z contains the latest
*          approximation to the eigenvector, and the index of the
*          eigenvector is returned in IFAIL.
*          If JOBZ = 'N', then Z is not referenced.
*
*  IZ      (global input) INTEGER
*          The row index in the global array Z indicating the first
*          row of sub( Z ).
*
*  JZ      (global input) INTEGER
*          The column index in the global array Z indicating the
*          first column of sub( Z ).
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*          DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
*  WORK    (local workspace/output) COMPLEX array,
*             dimension (LWORK)
*          WORK(1) returns the optimal workspace.
*
*  LWORK   (local input) INTEGER
*          Size of WORK array.  If only eigenvalues are requested:
*            LWORK >= N + MAX( NB * ( NP0 + 1 ), 3 )
*          If eigenvectors are requested:
*            LWORK >= N + ( NP0 + MQ0 + NB ) * NB
*          with NQ0 = NUMROC( NN, NB, 0, 0, NPCOL ).
*
*          For optimal performance, greater workspace is needed, i.e.
*            LWORK >= MAX( LWORK, N + NHETRD_LWOPT,
*              NHEGST_LWOPT )
*          Where LWORK is as defined above, and
*            NHETRD_LWORK = 2*( ANB+1 )*( 4*NPS+2 ) +
*              ( NPS + 1 ) * NPS
*            NHEGST_LWOPT =  2*NP0*NB + NQ0*NB + NB*NB
*
*            NB = DESCA( MB_ )
*            NP0 = NUMROC( N, NB, 0, 0, NPROW )
*            NQ0 = NUMROC( N, NB, 0, 0, NPCOL )
*            ICTXT = DESCA( CTXT_ )
*            ANB = PJLAENV( ICTXT, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
*            SQNPC = SQRT( DBLE( NPROW * NPCOL ) )
*            NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
*
*            NUMROC is a ScaLAPACK tool functions;
*            PJLAENV is a ScaLAPACK envionmental inquiry function
*            MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*            the subroutine BLACS_GRIDINFO.
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the optimal
*          size for all work arrays. Each of these values is returned
*          in the first entry of the correspondingwork array, and no
*          error message is issued by PXERBLA.
*
*  RWORK   (local workspace/output) REAL array,
*             dimension max(3,LRWORK)
*          On return, RWORK(1) contains the amount of workspace
*             required for optimal efficiency
*          if JOBZ='N' RWORK(1) = optimal amount of workspace
*             required to compute eigenvalues efficiently
*          if JOBZ='V' RWORK(1) = optimal amount of workspace
*             required to compute eigenvalues and eigenvectors
*             efficiently with no guarantee on orthogonality.
*             If RANGE='V', it is assumed that all eigenvectors
*             may be required when computing optimal workspace.
*
*  LRWORK  (local input) INTEGER
*          Size of RWORK
*          See below for definitions of variables used to define LRWORK.
*          If no eigenvectors are requested (JOBZ = 'N') then
*             LRWORK >= 5 * NN + 4 * N
*          If eigenvectors are requested (JOBZ = 'V' ) then
*             the amount of workspace required to guarantee that all
*             eigenvectors are computed is:
*             LRWORK >= 4*N + MAX( 5*NN, NP0 * MQ0 ) +
*               ICEIL( NEIG, NPROW*NPCOL)*NN
*
*             The computed eigenvectors may not be orthogonal if the
*             minimal workspace is supplied and ORFAC is too small.
*             If you want to guarantee orthogonality (at the cost
*             of potentially poor performance) you should add
*             the following to LRWORK:
*                (CLUSTERSIZE-1)*N
*             where CLUSTERSIZE is the number of eigenvalues in the
*             largest cluster, where a cluster is defined as a set of
*             close eigenvalues: { W(K),...,W(K+CLUSTERSIZE-1) |
*                                  W(J+1) <= W(J) + ORFAC*2*norm(A) }
*          Variable definitions:
*             NEIG = number of eigenvectors requested
*             NB = DESCA( MB_ ) = DESCA( NB_ ) = DESCZ( MB_ ) =
*                  DESCZ( NB_ )
*             NN = MAX( N, NB, 2 )
*             DESCA( RSRC_ ) = DESCA( NB_ ) = DESCZ( RSRC_ ) =
*                              DESCZ( CSRC_ ) = 0
*             NP0 = NUMROC( NN, NB, 0, 0, NPROW )
*             MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
*             ICEIL( X, Y ) is a ScaLAPACK function returning
*             ceiling(X/Y)
*
*          When LRWORK is too small:
*             If LRWORK is too small to guarantee orthogonality,
*             PCHEGVX attempts to maintain orthogonality in
*             the clusters with the smallest
*             spacing between the eigenvalues.
*             If LRWORK is too small to compute all the eigenvectors
*             requested, no computation is performed and INFO=-25
*             is returned.  Note that when RANGE='V', PCHEGVX does
*             not know how many eigenvectors are requested until
*             the eigenvalues are computed.  Therefore, when RANGE='V'
*             and as long as LRWORK is large enough to allow PCHEGVX to
*             compute the eigenvalues, PCHEGVX will compute the
*             eigenvalues and as many eigenvectors as it can.
*
*          Relationship between workspace, orthogonality & performance:
*             If CLUSTERSIZE >= N/SQRT(NPROW*NPCOL), then providing
*             enough space to compute all the eigenvectors
*             orthogonally will cause serious degradation in
*             performance. In the limit (i.e. CLUSTERSIZE = N-1)
*             PCSTEIN will perform no better than CSTEIN on 1 processor.
*             For CLUSTERSIZE = N/SQRT(NPROW*NPCOL) reorthogonalizing
*             all eigenvectors will increase the total execution time
*             by a factor of 2 or more.
*             For CLUSTERSIZE > N/SQRT(NPROW*NPCOL) execution time will
*             grow as the square of the cluster size, all other factors
*             remaining equal and assuming enough workspace.  Less
*             workspace means less reorthogonalization but faster
*             execution.
*
*          If LRWORK = -1, then LRWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IWORK   (local workspace) INTEGER array
*          On return, IWORK(1) contains the amount of integer workspace
*          required.
*
*  LIWORK  (local input) INTEGER
*          size of IWORK
*          LIWORK >= 6 * NNP
*          Where:
*            NNP = MAX( N, NPROW*NPCOL + 1, 4 )
*
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IFAIL   (output) INTEGER array, dimension (N)
*          IFAIL provides additional information when INFO .NE. 0
*          If (MOD(INFO/16,2).NE.0) then IFAIL(1) indicates the order of
*          the smallest minor which is not positive definite.
*          If (MOD(INFO,2).NE.0) on exit, then IFAIL contains the
*          indices of the eigenvectors that failed to converge.
*
*          If neither of the above error conditions hold and JOBZ = 'V',
*          then the first M elements of IFAIL are set to zero.
*
*  ICLUSTR (global output) integer array, dimension (2*NPROW*NPCOL)
*          This array contains indices of eigenvectors corresponding to
*          a cluster of eigenvalues that could not be reorthogonalized
*          due to insufficient workspace (see LWORK, ORFAC and INFO).
*          Eigenvectors corresponding to clusters of eigenvalues indexed
*          ICLUSTR(2*I-1) to ICLUSTR(2*I), could not be
*          reorthogonalized due to lack of workspace. Hence the
*          eigenvectors corresponding to these clusters may not be
*          orthogonal.  ICLUSTR() is a zero terminated array.
*          (ICLUSTR(2*K).NE.0 .AND. ICLUSTR(2*K+1).EQ.0) if and only if
*          K is the number of clusters
*          ICLUSTR is not referenced if JOBZ = 'N'
*
*  GAP     (global output) REAL array,
*             dimension (NPROW*NPCOL)
*          This array contains the gap between eigenvalues whose
*          eigenvectors could not be reorthogonalized. The output
*          values in this array correspond to the clusters indicated
*          by the array ICLUSTR. As a result, the dot product between
*          eigenvectors correspoding to the I^th cluster may be as high
*          as ( C * n ) / GAP(I) where C is a small constant.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  if (MOD(INFO,2).NE.0), then one or more eigenvectors
*                  failed to converge.  Their indices are stored
*                  in IFAIL.  Send e-mail to scalapack@cs.utk.edu
*                if (MOD(INFO/2,2).NE.0),then eigenvectors corresponding
*                  to one or more clusters of eigenvalues could not be
*                  reorthogonalized because of insufficient workspace.
*                  The indices of the clusters are stored in the array
*                  ICLUSTR.
*                if (MOD(INFO/4,2).NE.0), then space limit prevented
*                  PCHEGVX from computing all of the eigenvectors
*                  between VL and VU.  The number of eigenvectors
*                  computed is returned in NZ.
*                if (MOD(INFO/8,2).NE.0), then PCSTEBZ failed to
*                  compute eigenvalues.
*                  Send e-mail to scalapack@cs.utk.edu
*                if (MOD(INFO/16,2).NE.0), then B was not positive
*                  definite.  IFAIL(1) indicates the order of
*                  the smallest minor which is not positive definite.
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrices A(IA:*, JA:*), C(IC:IC+M-1,JC:JC+N-1),
*  and B( IB:IB+N-1, JB:JB+N-1 ) must verify some alignment properties,
*  namely the following expressions should be true:
*
*     DESCA(MB_) = DESCA(NB_)
*     IA = IB = IZ
*     JA = IB = JZ
*     DESCA(M_) = DESCB(M_) =DESCZ(M_)
*     DESCA(N_) = DESCB(N_)= DESCZ(N_)
*     DESCA(MB_) = DESCB(MB_) = DESCZ(MB_)
*     DESCA(NB_) = DESCB(NB_) = DESCZ(NB_)
*     DESCA(RSRC_) = DESCB(RSRC_) = DESCZ(RSRC_)
*     DESCA(CSRC_) = DESCB(CSRC_) = DESCZ(CSRC_)
*     MOD( IA-1, DESCA( MB_ ) ) = 0
*     MOD( JA-1, DESCA( NB_ ) ) = 0
*     MOD( IB-1, DESCB( MB_ ) ) = 0
*     MOD( JB-1, DESCB( NB_ ) ) = 0
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX            ONE
      PARAMETER          ( ONE = 1.0E+0 )
      REAL               FIVE, ZERO
      PARAMETER          ( FIVE = 5.0E+0, ZERO = 0.0E+0 )
      INTEGER            IERRNPD
      PARAMETER          ( IERRNPD = 16 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
      CHARACTER          TRANS
      INTEGER            ANB, IACOL, IAROW, IBCOL, IBROW, ICOFFA,
     $                   ICOFFB, ICTXT, IROFFA, IROFFB, LIWMIN, LRWMIN,
     $                   LRWOPT, LWMIN, LWOPT, MQ0, MYCOL, MYROW, NB,
     $                   NEIG, NHEGST_LWOPT, NHETRD_LWOPT, NN, NP0,
     $                   NPCOL, NPROW, NPS, NQ0, SQNPC
      REAL               EPS, SCALE
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 5 ), IDUM2( 5 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, INDXG2P, NUMROC, PJLAENV
      REAL               PSLAMCH
      EXTERNAL           LSAME, ICEIL, INDXG2P, NUMROC, PJLAENV, PSLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHEEVX, PCHENGST,
     $                   PCHK1MAT, PCHK2MAT, PCPOTRF, PCTRMM, PCTRSM,
     $                   PXERBLA, SGEBR2D, SGEBS2D, SSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, DBLE, ICHAR, INT, MAX, MIN, MOD,
     $                   REAL, SQRT
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 900+CTXT_ )
      ELSE IF( DESCA( CTXT_ ).NE.DESCB( CTXT_ ) ) THEN
         INFO = -( 1300+CTXT_ )
      ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
         INFO = -( 2600+CTXT_ )
      ELSE
*
*     Get machine constants.
*
         EPS = PSLAMCH( DESCA( CTXT_ ), 'Precision' )
*
         WANTZ = LSAME( JOBZ, 'V' )
         UPPER = LSAME( UPLO, 'U' )
         ALLEIG = LSAME( RANGE, 'A' )
         VALEIG = LSAME( RANGE, 'V' )
         INDEIG = LSAME( RANGE, 'I' )
         CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 9, INFO )
         CALL CHK1MAT( N, 4, N, 4, IB, JB, DESCB, 13, INFO )
         CALL CHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 26, INFO )
         IF( INFO.EQ.0 ) THEN
            IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
               RWORK( 1 ) = ABSTOL
               IF( VALEIG ) THEN
                  RWORK( 2 ) = VL
                  RWORK( 3 ) = VU
               ELSE
                  RWORK( 2 ) = ZERO
                  RWORK( 3 ) = ZERO
               END IF
               CALL SGEBS2D( DESCA( CTXT_ ), 'ALL', ' ', 3, 1, RWORK,
     $                       3 )
            ELSE
               CALL SGEBR2D( DESCA( CTXT_ ), 'ALL', ' ', 3, 1, RWORK, 3,
     $                       0, 0 )
            END IF
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $              NPROW )
            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $              NPROW )
            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $              NPCOL )
            IBCOL = INDXG2P( JB, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
     $              NPCOL )
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IROFFB = MOD( IB-1, DESCB( MB_ ) )
            ICOFFB = MOD( JB-1, DESCB( NB_ ) )
*
*     Compute the total amount of space needed
*
            LQUERY = .FALSE.
            IF( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
     $         LQUERY = .TRUE.
*
            LIWMIN = 6*MAX( N, ( NPROW*NPCOL )+1, 4 )
*
            NB = DESCA( MB_ )
            NN = MAX( N, NB, 2 )
            NP0 = NUMROC( NN, NB, 0, 0, NPROW )
*
            IF( ( .NOT.WANTZ ) .OR. ( VALEIG .AND. ( .NOT.LQUERY ) ) )
     $           THEN
               LWMIN = N + MAX( NB*( NP0+1 ), 3 )
               LWOPT = LWMIN
               LRWMIN = 5*NN + 4*N
               IF( WANTZ ) THEN
                  MQ0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPCOL )
                  LRWOPT = 4*N + MAX( 5*NN, NP0*MQ0 )
               ELSE
                  LRWOPT = LRWMIN
               END IF
               NEIG = 0
            ELSE
               IF( ALLEIG .OR. VALEIG ) THEN
                  NEIG = N
               ELSE IF( INDEIG ) THEN
                  NEIG = IU - IL + 1
               END IF
               MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
               LWMIN = N + ( NP0+MQ0+NB )*NB
               LWOPT = LWMIN
               LRWMIN = 4*N + MAX( 5*NN, NP0*MQ0 ) +
     $                  ICEIL( NEIG, NPROW*NPCOL )*NN
               LRWOPT = LRWMIN
*
            END IF
*
*           Compute how much workspace is needed to use the
*           new TRD and GST algorithms
*
            ANB = PJLAENV( ICTXT, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
            SQNPC = INT( SQRT( DBLE( NPROW*NPCOL ) ) )
            NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
            NHETRD_LWOPT = 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS+4 )*NPS
            NB = DESCA( MB_ )
            NP0 = NUMROC( N, NB, 0, 0, NPROW )
            NQ0 = NUMROC( N, NB, 0, 0, NPCOL )
            NHEGST_LWOPT = 2*NP0*NB + NQ0*NB + NB*NB
            LWOPT = MAX( LWOPT, N+NHETRD_LWOPT, NHEGST_LWOPT )
*
*       Version 1.0 Limitations
*
            IF( IBTYPE.LT.1 .OR. IBTYPE.GT.3 ) THEN
               INFO = -1
            ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
               INFO = -2
            ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
               INFO = -3
            ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -4
            ELSE IF( N.LT.0 ) THEN
               INFO = -5
            ELSE IF( IROFFA.NE.0 ) THEN
               INFO = -7
            ELSE IF( ICOFFA.NE.0 ) THEN
               INFO = -8
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 900+NB_ )
            ELSE IF( DESCA( M_ ).NE.DESCB( M_ ) ) THEN
               INFO = -( 1300+M_ )
            ELSE IF( DESCA( N_ ).NE.DESCB( N_ ) ) THEN
               INFO = -( 1300+N_ )
            ELSE IF( DESCA( MB_ ).NE.DESCB( MB_ ) ) THEN
               INFO = -( 1300+MB_ )
            ELSE IF( DESCA( NB_ ).NE.DESCB( NB_ ) ) THEN
               INFO = -( 1300+NB_ )
            ELSE IF( DESCA( RSRC_ ).NE.DESCB( RSRC_ ) ) THEN
               INFO = -( 1300+RSRC_ )
            ELSE IF( DESCA( CSRC_ ).NE.DESCB( CSRC_ ) ) THEN
               INFO = -( 1300+CSRC_ )
            ELSE IF( DESCA( CTXT_ ).NE.DESCB( CTXT_ ) ) THEN
               INFO = -( 1300+CTXT_ )
            ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
               INFO = -( 2200+M_ )
            ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
               INFO = -( 2200+N_ )
            ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
               INFO = -( 2200+MB_ )
            ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
               INFO = -( 2200+NB_ )
            ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
               INFO = -( 2200+RSRC_ )
            ELSE IF( DESCA( CSRC_ ).NE.DESCZ( CSRC_ ) ) THEN
               INFO = -( 2200+CSRC_ )
            ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
               INFO = -( 2200+CTXT_ )
            ELSE IF( IROFFB.NE.0 .OR. IBROW.NE.IAROW ) THEN
               INFO = -11
            ELSE IF( ICOFFB.NE.0 .OR. IBCOL.NE.IACOL ) THEN
               INFO = -12
            ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
               INFO = -15
            ELSE IF( INDEIG .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
     $                THEN
               INFO = -16
            ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
     $                THEN
               INFO = -17
            ELSE IF( VALEIG .AND. ( ABS( RWORK( 2 )-VL ).GT.FIVE*EPS*
     $               ABS( VL ) ) ) THEN
               INFO = -14
            ELSE IF( VALEIG .AND. ( ABS( RWORK( 3 )-VU ).GT.FIVE*EPS*
     $               ABS( VU ) ) ) THEN
               INFO = -15
            ELSE IF( ABS( RWORK( 1 )-ABSTOL ).GT.FIVE*EPS*
     $               ABS( ABSTOL ) ) THEN
               INFO = -18
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -28
            ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -30
            ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -32
            END IF
         END IF
         IDUM1( 1 ) = IBTYPE
         IDUM2( 1 ) = 1
         IF( WANTZ ) THEN
            IDUM1( 2 ) = ICHAR( 'V' )
         ELSE
            IDUM1( 2 ) = ICHAR( 'N' )
         END IF
         IDUM2( 2 ) = 2
         IF( UPPER ) THEN
            IDUM1( 3 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 3 ) = ICHAR( 'L' )
         END IF
         IDUM2( 3 ) = 3
         IF( ALLEIG ) THEN
            IDUM1( 4 ) = ICHAR( 'A' )
         ELSE IF( INDEIG ) THEN
            IDUM1( 4 ) = ICHAR( 'I' )
         ELSE
            IDUM1( 4 ) = ICHAR( 'V' )
         END IF
         IDUM2( 4 ) = 4
         IF( LQUERY ) THEN
            IDUM1( 5 ) = -1
         ELSE
            IDUM1( 5 ) = 1
         END IF
         IDUM2( 5 ) = 5
         CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 9, N, 4, N, 4, IB,
     $                  JB, DESCB, 13, 5, IDUM1, IDUM2, INFO )
         CALL PCHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 26, 0, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IWORK( 1 ) = LIWMIN
      WORK( 1 ) = CMPLX( REAL( LWOPT ) )
      RWORK( 1 ) = REAL( LRWOPT )
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCHEGVX ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Form a Cholesky factorization of sub( B ).
*
      CALL PCPOTRF( UPLO, N, B, IB, JB, DESCB, INFO )
      IF( INFO.NE.0 ) THEN
         IWORK( 1 ) = LIWMIN
         WORK( 1 ) = CMPLX( REAL( LWOPT ) )
         RWORK( 1 ) = REAL( LRWOPT )
         IFAIL( 1 ) = INFO
         INFO = IERRNPD
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
      CALL PCHENGST( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
     $               DESCB, SCALE, WORK, LWORK, INFO )
      CALL PCHEEVX( JOBZ, RANGE, UPLO, N, A, IA, JA, DESCA, VL, VU, IL,
     $              IU, ABSTOL, M, NZ, W, ORFAC, Z, IZ, JZ, DESCZ, WORK,
     $              LWORK, RWORK, LRWORK, IWORK, LIWORK, IFAIL, ICLUSTR,
     $              GAP, INFO )
*
      IF( WANTZ ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
         NEIG = M
         IF( IBTYPE.EQ.1 .OR. IBTYPE.EQ.2 ) THEN
*
*           For sub( A )*x=(lambda)*sub( B )*x and
*           sub( A )*sub( B )*x=(lambda)*x; backtransform eigenvectors:
*           x = inv(L)'*y or inv(U)*y
*
            IF( UPPER ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'C'
            END IF
*
            CALL PCTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
     $                   B, IB, JB, DESCB, Z, IZ, JZ, DESCZ )
*
         ELSE IF( IBTYPE.EQ.3 ) THEN
*
*           For sub( B )*sub( A )*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U'*y
*
            IF( UPPER ) THEN
               TRANS = 'C'
            ELSE
               TRANS = 'N'
            END IF
*
            CALL PCTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
     $                   B, IB, JB, DESCB, Z, IZ, JZ, DESCZ )
         END IF
      END IF
*
      IF( SCALE.NE.ONE ) THEN
         CALL SSCAL( N, SCALE, W, 1 )
      END IF
*
      IWORK( 1 ) = LIWMIN
      WORK( 1 ) = CMPLX( REAL( LWOPT ) )
      RWORK( 1 ) = REAL( LRWOPT )
      RETURN
*
*     End of PCHEGVX
*
      END