1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
SUBROUTINE PCHEGVX( IBTYPE, JOBZ, RANGE, UPLO, N, A, IA, JA,
$ DESCA, B, IB, JB, DESCB, VL, VU, IL, IU,
$ ABSTOL, M, NZ, W, ORFAC, Z, IZ, JZ, DESCZ,
$ WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK,
$ IFAIL, ICLUSTR, GAP, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* October 15, 1999
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IA, IB, IBTYPE, IL, INFO, IU, IZ, JA, JB, JZ,
$ LIWORK, LRWORK, LWORK, M, N, NZ
REAL ABSTOL, ORFAC, VL, VU
* ..
* .. Array Arguments ..
*
INTEGER DESCA( * ), DESCB( * ), DESCZ( * ),
$ ICLUSTR( * ), IFAIL( * ), IWORK( * )
REAL GAP( * ), RWORK( * ), W( * )
COMPLEX A( * ), B( * ), WORK( * ), Z( * )
* ..
*
* Purpose
*
* =======
*
* PCHEGVX computes all the eigenvalues, and optionally,
* the eigenvectors
* of a complex generalized Hermitian-definite eigenproblem, of the form
* sub( A )*x=(lambda)*sub( B )*x, sub( A )*sub( B )x=(lambda)*x, or
* sub( B )*sub( A )*x=(lambda)*x.
* Here sub( A ) denoting A( IA:IA+N-1, JA:JA+N-1 ) is assumed to be
* Hermitian, and sub( B ) denoting B( IB:IB+N-1, JB:JB+N-1 ) is assumed
* to be Hermitian positive definite.
*
* Notes
* =====
*
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
* Arguments
* =========
*
* IBTYPE (global input) INTEGER
* Specifies the problem type to be solved:
* = 1: sub( A )*x = (lambda)*sub( B )*x
* = 2: sub( A )*sub( B )*x = (lambda)*x
* = 3: sub( B )*sub( A )*x = (lambda)*x
*
* JOBZ (global input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (global input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the interval [VL,VU] will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
*
* UPLO (global input) CHARACTER*1
* = 'U': Upper triangles of sub( A ) and sub( B ) are stored;
* = 'L': Lower triangles of sub( A ) and sub( B ) are stored.
*
* N (global input) INTEGER
* The order of the matrices sub( A ) and sub( B ). N >= 0.
*
* A (local input/local output) COMPLEX pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* N-by-N Hermitian distributed matrix sub( A ). If UPLO = 'U',
* the leading N-by-N upper triangular part of sub( A ) contains
* the upper triangular part of the matrix. If UPLO = 'L', the
* leading N-by-N lower triangular part of sub( A ) contains
* the lower triangular part of the matrix.
*
* On exit, if JOBZ = 'V', then if INFO = 0, sub( A ) contains
* the distributed matrix Z of eigenvectors. The eigenvectors
* are normalized as follows:
* if IBTYPE = 1 or 2, Z**H*sub( B )*Z = I;
* if IBTYPE = 3, Z**H*inv( sub( B ) )*Z = I.
* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
* or the lower triangle (if UPLO='L') of sub( A ), including
* the diagonal, is destroyed.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
* If DESCA( CTXT_ ) is incorrect, PCHEGVX cannot guarantee
* correct error reporting.
*
* B (local input/local output) COMPLEX pointer into the
* local memory to an array of dimension (LLD_B, LOCc(JB+N-1)).
* On entry, this array contains the local pieces of the
* N-by-N Hermitian distributed matrix sub( B ). If UPLO = 'U',
* the leading N-by-N upper triangular part of sub( B ) contains
* the upper triangular part of the matrix. If UPLO = 'L', the
* leading N-by-N lower triangular part of sub( B ) contains
* the lower triangular part of the matrix.
*
* On exit, if INFO <= N, the part of sub( B ) containing the
* matrix is overwritten by the triangular factor U or L from
* the Cholesky factorization sub( B ) = U**H*U or
* sub( B ) = L*L**H.
*
* IB (global input) INTEGER
* The row index in the global array B indicating the first
* row of sub( B ).
*
* JB (global input) INTEGER
* The column index in the global array B indicating the
* first column of sub( B ).
*
* DESCB (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix B.
* DESCB( CTXT_ ) must equal DESCA( CTXT_ )
*
* VL (global input) REAL
* If RANGE='V', the lower bound of the interval to be searched
* for eigenvalues. Not referenced if RANGE = 'A' or 'I'.
*
* VU (global input) REAL
* If RANGE='V', the upper bound of the interval to be searched
* for eigenvalues. Not referenced if RANGE = 'A' or 'I'.
*
* IL (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* smallest eigenvalue to be returned. IL >= 1.
* Not referenced if RANGE = 'A' or 'V'.
*
* IU (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* largest eigenvalue to be returned. min(IL,N) <= IU <= N.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (global input) REAL
* If JOBZ='V', setting ABSTOL to PSLAMCH( CONTEXT, 'U') yields
* the most orthogonal eigenvectors.
*
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*norm(T) will be used in its place,
* where norm(T) is the 1-norm of the tridiagonal matrix
* obtained by reducing A to tridiagonal form.
*
* Eigenvalues will be computed most accurately when ABSTOL is
* set to twice the underflow threshold 2*PSLAMCH('S') not zero.
* If this routine returns with ((MOD(INFO,2).NE.0) .OR.
* (MOD(INFO/8,2).NE.0)), indicating that some eigenvalues or
* eigenvectors did not converge, try setting ABSTOL to
* 2*PSLAMCH('S').
*
* See "Computing Small Singular Values of Bidiagonal Matrices
* with Guaranteed High Relative Accuracy," by Demmel and
* Kahan, LAPACK Working Note #3.
*
* See "On the correctness of Parallel Bisection in Floating
* Point" by Demmel, Dhillon and Ren, LAPACK Working Note #70
*
* M (global output) INTEGER
* Total number of eigenvalues found. 0 <= M <= N.
*
* NZ (global output) INTEGER
* Total number of eigenvectors computed. 0 <= NZ <= M.
* The number of columns of Z that are filled.
* If JOBZ .NE. 'V', NZ is not referenced.
* If JOBZ .EQ. 'V', NZ = M unless the user supplies
* insufficient space and PCHEGVX is not able to detect this
* before beginning computation. To get all the eigenvectors
* requested, the user must supply both sufficient
* space to hold the eigenvectors in Z (M .LE. DESCZ(N_))
* and sufficient workspace to compute them. (See LWORK below.)
* PCHEGVX is always able to detect insufficient space without
* computation unless RANGE .EQ. 'V'.
*
* W (global output) REAL array, dimension (N)
* On normal exit, the first M entries contain the selected
* eigenvalues in ascending order.
*
* ORFAC (global input) REAL
* Specifies which eigenvectors should be reorthogonalized.
* Eigenvectors that correspond to eigenvalues which are within
* tol=ORFAC*norm(A) of each other are to be reorthogonalized.
* However, if the workspace is insufficient (see LWORK),
* tol may be decreased until all eigenvectors to be
* reorthogonalized can be stored in one process.
* No reorthogonalization will be done if ORFAC equals zero.
* A default value of 10^-3 is used if ORFAC is negative.
* ORFAC should be identical on all processes.
*
* Z (local output) COMPLEX array,
* global dimension (N, N),
* local dimension ( LLD_Z, LOCc(JZ+N-1) )
* If JOBZ = 'V', then on normal exit the first M columns of Z
* contain the orthonormal eigenvectors of the matrix
* corresponding to the selected eigenvalues. If an eigenvector
* fails to converge, then that column of Z contains the latest
* approximation to the eigenvector, and the index of the
* eigenvector is returned in IFAIL.
* If JOBZ = 'N', then Z is not referenced.
*
* IZ (global input) INTEGER
* The row index in the global array Z indicating the first
* row of sub( Z ).
*
* JZ (global input) INTEGER
* The column index in the global array Z indicating the
* first column of sub( Z ).
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
* DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
* WORK (local workspace/output) COMPLEX array,
* dimension (LWORK)
* WORK(1) returns the optimal workspace.
*
* LWORK (local input) INTEGER
* Size of WORK array. If only eigenvalues are requested:
* LWORK >= N + MAX( NB * ( NP0 + 1 ), 3 )
* If eigenvectors are requested:
* LWORK >= N + ( NP0 + MQ0 + NB ) * NB
* with NQ0 = NUMROC( NN, NB, 0, 0, NPCOL ).
*
* For optimal performance, greater workspace is needed, i.e.
* LWORK >= MAX( LWORK, N + NHETRD_LWOPT,
* NHEGST_LWOPT )
* Where LWORK is as defined above, and
* NHETRD_LWORK = 2*( ANB+1 )*( 4*NPS+2 ) +
* ( NPS + 1 ) * NPS
* NHEGST_LWOPT = 2*NP0*NB + NQ0*NB + NB*NB
*
* NB = DESCA( MB_ )
* NP0 = NUMROC( N, NB, 0, 0, NPROW )
* NQ0 = NUMROC( N, NB, 0, 0, NPCOL )
* ICTXT = DESCA( CTXT_ )
* ANB = PJLAENV( ICTXT, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
* SQNPC = SQRT( DBLE( NPROW * NPCOL ) )
* NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
*
* NUMROC is a ScaLAPACK tool functions;
* PJLAENV is a ScaLAPACK envionmental inquiry function
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the optimal
* size for all work arrays. Each of these values is returned
* in the first entry of the correspondingwork array, and no
* error message is issued by PXERBLA.
*
* RWORK (local workspace/output) REAL array,
* dimension max(3,LRWORK)
* On return, RWORK(1) contains the amount of workspace
* required for optimal efficiency
* if JOBZ='N' RWORK(1) = optimal amount of workspace
* required to compute eigenvalues efficiently
* if JOBZ='V' RWORK(1) = optimal amount of workspace
* required to compute eigenvalues and eigenvectors
* efficiently with no guarantee on orthogonality.
* If RANGE='V', it is assumed that all eigenvectors
* may be required when computing optimal workspace.
*
* LRWORK (local input) INTEGER
* Size of RWORK
* See below for definitions of variables used to define LRWORK.
* If no eigenvectors are requested (JOBZ = 'N') then
* LRWORK >= 5 * NN + 4 * N
* If eigenvectors are requested (JOBZ = 'V' ) then
* the amount of workspace required to guarantee that all
* eigenvectors are computed is:
* LRWORK >= 4*N + MAX( 5*NN, NP0 * MQ0 ) +
* ICEIL( NEIG, NPROW*NPCOL)*NN
*
* The computed eigenvectors may not be orthogonal if the
* minimal workspace is supplied and ORFAC is too small.
* If you want to guarantee orthogonality (at the cost
* of potentially poor performance) you should add
* the following to LRWORK:
* (CLUSTERSIZE-1)*N
* where CLUSTERSIZE is the number of eigenvalues in the
* largest cluster, where a cluster is defined as a set of
* close eigenvalues: { W(K),...,W(K+CLUSTERSIZE-1) |
* W(J+1) <= W(J) + ORFAC*2*norm(A) }
* Variable definitions:
* NEIG = number of eigenvectors requested
* NB = DESCA( MB_ ) = DESCA( NB_ ) = DESCZ( MB_ ) =
* DESCZ( NB_ )
* NN = MAX( N, NB, 2 )
* DESCA( RSRC_ ) = DESCA( NB_ ) = DESCZ( RSRC_ ) =
* DESCZ( CSRC_ ) = 0
* NP0 = NUMROC( NN, NB, 0, 0, NPROW )
* MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
* ICEIL( X, Y ) is a ScaLAPACK function returning
* ceiling(X/Y)
*
* When LRWORK is too small:
* If LRWORK is too small to guarantee orthogonality,
* PCHEGVX attempts to maintain orthogonality in
* the clusters with the smallest
* spacing between the eigenvalues.
* If LRWORK is too small to compute all the eigenvectors
* requested, no computation is performed and INFO=-25
* is returned. Note that when RANGE='V', PCHEGVX does
* not know how many eigenvectors are requested until
* the eigenvalues are computed. Therefore, when RANGE='V'
* and as long as LRWORK is large enough to allow PCHEGVX to
* compute the eigenvalues, PCHEGVX will compute the
* eigenvalues and as many eigenvectors as it can.
*
* Relationship between workspace, orthogonality & performance:
* If CLUSTERSIZE >= N/SQRT(NPROW*NPCOL), then providing
* enough space to compute all the eigenvectors
* orthogonally will cause serious degradation in
* performance. In the limit (i.e. CLUSTERSIZE = N-1)
* PCSTEIN will perform no better than CSTEIN on 1 processor.
* For CLUSTERSIZE = N/SQRT(NPROW*NPCOL) reorthogonalizing
* all eigenvectors will increase the total execution time
* by a factor of 2 or more.
* For CLUSTERSIZE > N/SQRT(NPROW*NPCOL) execution time will
* grow as the square of the cluster size, all other factors
* remaining equal and assuming enough workspace. Less
* workspace means less reorthogonalization but faster
* execution.
*
* If LRWORK = -1, then LRWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* IWORK (local workspace) INTEGER array
* On return, IWORK(1) contains the amount of integer workspace
* required.
*
* LIWORK (local input) INTEGER
* size of IWORK
* LIWORK >= 6 * NNP
* Where:
* NNP = MAX( N, NPROW*NPCOL + 1, 4 )
*
* If LIWORK = -1, then LIWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* IFAIL (output) INTEGER array, dimension (N)
* IFAIL provides additional information when INFO .NE. 0
* If (MOD(INFO/16,2).NE.0) then IFAIL(1) indicates the order of
* the smallest minor which is not positive definite.
* If (MOD(INFO,2).NE.0) on exit, then IFAIL contains the
* indices of the eigenvectors that failed to converge.
*
* If neither of the above error conditions hold and JOBZ = 'V',
* then the first M elements of IFAIL are set to zero.
*
* ICLUSTR (global output) integer array, dimension (2*NPROW*NPCOL)
* This array contains indices of eigenvectors corresponding to
* a cluster of eigenvalues that could not be reorthogonalized
* due to insufficient workspace (see LWORK, ORFAC and INFO).
* Eigenvectors corresponding to clusters of eigenvalues indexed
* ICLUSTR(2*I-1) to ICLUSTR(2*I), could not be
* reorthogonalized due to lack of workspace. Hence the
* eigenvectors corresponding to these clusters may not be
* orthogonal. ICLUSTR() is a zero terminated array.
* (ICLUSTR(2*K).NE.0 .AND. ICLUSTR(2*K+1).EQ.0) if and only if
* K is the number of clusters
* ICLUSTR is not referenced if JOBZ = 'N'
*
* GAP (global output) REAL array,
* dimension (NPROW*NPCOL)
* This array contains the gap between eigenvalues whose
* eigenvectors could not be reorthogonalized. The output
* values in this array correspond to the clusters indicated
* by the array ICLUSTR. As a result, the dot product between
* eigenvectors correspoding to the I^th cluster may be as high
* as ( C * n ) / GAP(I) where C is a small constant.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: if (MOD(INFO,2).NE.0), then one or more eigenvectors
* failed to converge. Their indices are stored
* in IFAIL. Send e-mail to scalapack@cs.utk.edu
* if (MOD(INFO/2,2).NE.0),then eigenvectors corresponding
* to one or more clusters of eigenvalues could not be
* reorthogonalized because of insufficient workspace.
* The indices of the clusters are stored in the array
* ICLUSTR.
* if (MOD(INFO/4,2).NE.0), then space limit prevented
* PCHEGVX from computing all of the eigenvectors
* between VL and VU. The number of eigenvectors
* computed is returned in NZ.
* if (MOD(INFO/8,2).NE.0), then PCSTEBZ failed to
* compute eigenvalues.
* Send e-mail to scalapack@cs.utk.edu
* if (MOD(INFO/16,2).NE.0), then B was not positive
* definite. IFAIL(1) indicates the order of
* the smallest minor which is not positive definite.
*
* Alignment requirements
* ======================
*
* The distributed submatrices A(IA:*, JA:*), C(IC:IC+M-1,JC:JC+N-1),
* and B( IB:IB+N-1, JB:JB+N-1 ) must verify some alignment properties,
* namely the following expressions should be true:
*
* DESCA(MB_) = DESCA(NB_)
* IA = IB = IZ
* JA = IB = JZ
* DESCA(M_) = DESCB(M_) =DESCZ(M_)
* DESCA(N_) = DESCB(N_)= DESCZ(N_)
* DESCA(MB_) = DESCB(MB_) = DESCZ(MB_)
* DESCA(NB_) = DESCB(NB_) = DESCZ(NB_)
* DESCA(RSRC_) = DESCB(RSRC_) = DESCZ(RSRC_)
* DESCA(CSRC_) = DESCB(CSRC_) = DESCZ(CSRC_)
* MOD( IA-1, DESCA( MB_ ) ) = 0
* MOD( JA-1, DESCA( NB_ ) ) = 0
* MOD( IB-1, DESCB( MB_ ) ) = 0
* MOD( JB-1, DESCB( NB_ ) ) = 0
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX ONE
PARAMETER ( ONE = 1.0E+0 )
REAL FIVE, ZERO
PARAMETER ( FIVE = 5.0E+0, ZERO = 0.0E+0 )
INTEGER IERRNPD
PARAMETER ( IERRNPD = 16 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
CHARACTER TRANS
INTEGER ANB, IACOL, IAROW, IBCOL, IBROW, ICOFFA,
$ ICOFFB, ICTXT, IROFFA, IROFFB, LIWMIN, LRWMIN,
$ LRWOPT, LWMIN, LWOPT, MQ0, MYCOL, MYROW, NB,
$ NEIG, NHEGST_LWOPT, NHETRD_LWOPT, NN, NP0,
$ NPCOL, NPROW, NPS, NQ0, SQNPC
REAL EPS, SCALE
* ..
* .. Local Arrays ..
INTEGER IDUM1( 5 ), IDUM2( 5 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, INDXG2P, NUMROC, PJLAENV
REAL PSLAMCH
EXTERNAL LSAME, ICEIL, INDXG2P, NUMROC, PJLAENV, PSLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, PCHEEVX, PCHENGST,
$ PCHK1MAT, PCHK2MAT, PCPOTRF, PCTRMM, PCTRSM,
$ PXERBLA, SGEBR2D, SGEBS2D, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, DBLE, ICHAR, INT, MAX, MIN, MOD,
$ REAL, SQRT
* ..
* .. Executable Statements ..
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 900+CTXT_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCB( CTXT_ ) ) THEN
INFO = -( 1300+CTXT_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 2600+CTXT_ )
ELSE
*
* Get machine constants.
*
EPS = PSLAMCH( DESCA( CTXT_ ), 'Precision' )
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 9, INFO )
CALL CHK1MAT( N, 4, N, 4, IB, JB, DESCB, 13, INFO )
CALL CHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 26, INFO )
IF( INFO.EQ.0 ) THEN
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
RWORK( 1 ) = ABSTOL
IF( VALEIG ) THEN
RWORK( 2 ) = VL
RWORK( 3 ) = VU
ELSE
RWORK( 2 ) = ZERO
RWORK( 3 ) = ZERO
END IF
CALL SGEBS2D( DESCA( CTXT_ ), 'ALL', ' ', 3, 1, RWORK,
$ 3 )
ELSE
CALL SGEBR2D( DESCA( CTXT_ ), 'ALL', ' ', 3, 1, RWORK, 3,
$ 0, 0 )
END IF
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
$ NPROW )
IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
$ NPROW )
IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
IBCOL = INDXG2P( JB, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
$ NPCOL )
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
IROFFB = MOD( IB-1, DESCB( MB_ ) )
ICOFFB = MOD( JB-1, DESCB( NB_ ) )
*
* Compute the total amount of space needed
*
LQUERY = .FALSE.
IF( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
$ LQUERY = .TRUE.
*
LIWMIN = 6*MAX( N, ( NPROW*NPCOL )+1, 4 )
*
NB = DESCA( MB_ )
NN = MAX( N, NB, 2 )
NP0 = NUMROC( NN, NB, 0, 0, NPROW )
*
IF( ( .NOT.WANTZ ) .OR. ( VALEIG .AND. ( .NOT.LQUERY ) ) )
$ THEN
LWMIN = N + MAX( NB*( NP0+1 ), 3 )
LWOPT = LWMIN
LRWMIN = 5*NN + 4*N
IF( WANTZ ) THEN
MQ0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPCOL )
LRWOPT = 4*N + MAX( 5*NN, NP0*MQ0 )
ELSE
LRWOPT = LRWMIN
END IF
NEIG = 0
ELSE
IF( ALLEIG .OR. VALEIG ) THEN
NEIG = N
ELSE IF( INDEIG ) THEN
NEIG = IU - IL + 1
END IF
MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
LWMIN = N + ( NP0+MQ0+NB )*NB
LWOPT = LWMIN
LRWMIN = 4*N + MAX( 5*NN, NP0*MQ0 ) +
$ ICEIL( NEIG, NPROW*NPCOL )*NN
LRWOPT = LRWMIN
*
END IF
*
* Compute how much workspace is needed to use the
* new TRD and GST algorithms
*
ANB = PJLAENV( ICTXT, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
SQNPC = INT( SQRT( DBLE( NPROW*NPCOL ) ) )
NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
NHETRD_LWOPT = 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS+4 )*NPS
NB = DESCA( MB_ )
NP0 = NUMROC( N, NB, 0, 0, NPROW )
NQ0 = NUMROC( N, NB, 0, 0, NPCOL )
NHEGST_LWOPT = 2*NP0*NB + NQ0*NB + NB*NB
LWOPT = MAX( LWOPT, N+NHETRD_LWOPT, NHEGST_LWOPT )
*
* Version 1.0 Limitations
*
IF( IBTYPE.LT.1 .OR. IBTYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -3
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( IROFFA.NE.0 ) THEN
INFO = -7
ELSE IF( ICOFFA.NE.0 ) THEN
INFO = -8
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 900+NB_ )
ELSE IF( DESCA( M_ ).NE.DESCB( M_ ) ) THEN
INFO = -( 1300+M_ )
ELSE IF( DESCA( N_ ).NE.DESCB( N_ ) ) THEN
INFO = -( 1300+N_ )
ELSE IF( DESCA( MB_ ).NE.DESCB( MB_ ) ) THEN
INFO = -( 1300+MB_ )
ELSE IF( DESCA( NB_ ).NE.DESCB( NB_ ) ) THEN
INFO = -( 1300+NB_ )
ELSE IF( DESCA( RSRC_ ).NE.DESCB( RSRC_ ) ) THEN
INFO = -( 1300+RSRC_ )
ELSE IF( DESCA( CSRC_ ).NE.DESCB( CSRC_ ) ) THEN
INFO = -( 1300+CSRC_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCB( CTXT_ ) ) THEN
INFO = -( 1300+CTXT_ )
ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
INFO = -( 2200+M_ )
ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
INFO = -( 2200+N_ )
ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 2200+MB_ )
ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 2200+NB_ )
ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
INFO = -( 2200+RSRC_ )
ELSE IF( DESCA( CSRC_ ).NE.DESCZ( CSRC_ ) ) THEN
INFO = -( 2200+CSRC_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 2200+CTXT_ )
ELSE IF( IROFFB.NE.0 .OR. IBROW.NE.IAROW ) THEN
INFO = -11
ELSE IF( ICOFFB.NE.0 .OR. IBCOL.NE.IACOL ) THEN
INFO = -12
ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
INFO = -15
ELSE IF( INDEIG .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
$ THEN
INFO = -16
ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
$ THEN
INFO = -17
ELSE IF( VALEIG .AND. ( ABS( RWORK( 2 )-VL ).GT.FIVE*EPS*
$ ABS( VL ) ) ) THEN
INFO = -14
ELSE IF( VALEIG .AND. ( ABS( RWORK( 3 )-VU ).GT.FIVE*EPS*
$ ABS( VU ) ) ) THEN
INFO = -15
ELSE IF( ABS( RWORK( 1 )-ABSTOL ).GT.FIVE*EPS*
$ ABS( ABSTOL ) ) THEN
INFO = -18
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -28
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -30
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -32
END IF
END IF
IDUM1( 1 ) = IBTYPE
IDUM2( 1 ) = 1
IF( WANTZ ) THEN
IDUM1( 2 ) = ICHAR( 'V' )
ELSE
IDUM1( 2 ) = ICHAR( 'N' )
END IF
IDUM2( 2 ) = 2
IF( UPPER ) THEN
IDUM1( 3 ) = ICHAR( 'U' )
ELSE
IDUM1( 3 ) = ICHAR( 'L' )
END IF
IDUM2( 3 ) = 3
IF( ALLEIG ) THEN
IDUM1( 4 ) = ICHAR( 'A' )
ELSE IF( INDEIG ) THEN
IDUM1( 4 ) = ICHAR( 'I' )
ELSE
IDUM1( 4 ) = ICHAR( 'V' )
END IF
IDUM2( 4 ) = 4
IF( LQUERY ) THEN
IDUM1( 5 ) = -1
ELSE
IDUM1( 5 ) = 1
END IF
IDUM2( 5 ) = 5
CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 9, N, 4, N, 4, IB,
$ JB, DESCB, 13, 5, IDUM1, IDUM2, INFO )
CALL PCHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 26, 0, IDUM1, IDUM2,
$ INFO )
END IF
*
IWORK( 1 ) = LIWMIN
WORK( 1 ) = CMPLX( REAL( LWOPT ) )
RWORK( 1 ) = REAL( LRWOPT )
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PCHEGVX ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Form a Cholesky factorization of sub( B ).
*
CALL PCPOTRF( UPLO, N, B, IB, JB, DESCB, INFO )
IF( INFO.NE.0 ) THEN
IWORK( 1 ) = LIWMIN
WORK( 1 ) = CMPLX( REAL( LWOPT ) )
RWORK( 1 ) = REAL( LRWOPT )
IFAIL( 1 ) = INFO
INFO = IERRNPD
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL PCHENGST( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
$ DESCB, SCALE, WORK, LWORK, INFO )
CALL PCHEEVX( JOBZ, RANGE, UPLO, N, A, IA, JA, DESCA, VL, VU, IL,
$ IU, ABSTOL, M, NZ, W, ORFAC, Z, IZ, JZ, DESCZ, WORK,
$ LWORK, RWORK, LRWORK, IWORK, LIWORK, IFAIL, ICLUSTR,
$ GAP, INFO )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
NEIG = M
IF( IBTYPE.EQ.1 .OR. IBTYPE.EQ.2 ) THEN
*
* For sub( A )*x=(lambda)*sub( B )*x and
* sub( A )*sub( B )*x=(lambda)*x; backtransform eigenvectors:
* x = inv(L)'*y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
CALL PCTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
$ B, IB, JB, DESCB, Z, IZ, JZ, DESCZ )
*
ELSE IF( IBTYPE.EQ.3 ) THEN
*
* For sub( B )*sub( A )*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U'*y
*
IF( UPPER ) THEN
TRANS = 'C'
ELSE
TRANS = 'N'
END IF
*
CALL PCTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
$ B, IB, JB, DESCB, Z, IZ, JZ, DESCZ )
END IF
END IF
*
IF( SCALE.NE.ONE ) THEN
CALL SSCAL( N, SCALE, W, 1 )
END IF
*
IWORK( 1 ) = LIWMIN
WORK( 1 ) = CMPLX( REAL( LWOPT ) )
RWORK( 1 ) = REAL( LRWOPT )
RETURN
*
* End of PCHEGVX
*
END
|