File: pchentrd.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (587 lines) | stat: -rw-r--r-- 22,127 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
      SUBROUTINE PCHENTRD( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
     $                     LWORK, RWORK, LRWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     October 15, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            IA, INFO, JA, LRWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               D( * ), E( * ), RWORK( * )
      COMPLEX            A( * ), TAU( * ), WORK( * )
*     ..
*  Bugs
*  ====
*
*
*  Support for UPLO='U' is limited to calling the old, slow, PCHETRD
*  code.
*
*
*  Purpose
*
*  =======
*
*  PCHENTRD is a prototype version of PCHETRD which uses tailored
*  codes (either the serial, CHETRD, or the parallel code, PCHETTRD)
*  when the workspace provided by the user is adequate.
*
*
*  PCHENTRD reduces a complex Hermitian matrix sub( A ) to Hermitian
*  tridiagonal form T by an unitary similarity transformation:
*  Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
*  Features
*  ========
*
*  PCHENTRD is faster than PCHETRD on almost all matrices,
*  particularly small ones (i.e. N < 500 * sqrt(P) ), provided that
*  enough workspace is available to use the tailored codes.
*
*  The tailored codes provide performance that is essentially
*  independent of the input data layout.
*
*  The tailored codes place no restrictions on IA, JA, MB or NB.
*  At present, IA, JA, MB and NB are restricted to those values allowed
*  by PCHETRD to keep the interface simple.  These restrictions are
*  documented below.  (Search for "restrictions".)
*
*  Notes
*  =====
*
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix sub( A ) is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          Hermitian distributed matrix sub( A ).  If UPLO = 'U', the
*          leading N-by-N upper triangular part of sub( A ) contains
*          the upper triangular part of the matrix, and its strictly
*          lower triangular part is not referenced. If UPLO = 'L', the
*          leading N-by-N lower triangular part of sub( A ) contains the
*          lower triangular part of the matrix, and its strictly upper
*          triangular part is not referenced. On exit, if UPLO = 'U',
*          the diagonal and first superdiagonal of sub( A ) are over-
*          written by the corresponding elements of the tridiagonal
*          matrix T, and the elements above the first superdiagonal,
*          with the array TAU, represent the unitary matrix Q as a
*          product of elementary reflectors; if UPLO = 'L', the diagonal
*          and first subdiagonal of sub( A ) are overwritten by the
*          corresponding elements of the tridiagonal matrix T, and the
*          elements below the first subdiagonal, with the array TAU,
*          represent the unitary matrix Q as a product of elementary
*          reflectors. See Further Details.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  D       (local output) REAL array, dimension LOCc(JA+N-1)
*          The diagonal elements of the tridiagonal matrix T:
*          D(i) = A(i,i). D is tied to the distributed matrix A.
*
*  E       (local output) REAL array, dimension LOCc(JA+N-1)
*          if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
*          elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
*          UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
*          distributed matrix A.
*
*  TAU     (local output) COMPLEX, array, dimension
*          LOCc(JA+N-1). This array contains the scalar factors TAU of
*          the elementary reflectors. TAU is tied to the distributed
*          matrix A.
*
*  WORK    (local workspace/local output) COMPLEX array,
*                                                  dimension (LWORK)
*          On exit, WORK( 1 ) returns the optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK >= MAX( NB * ( NP +1 ), 3 * NB )
*
*          For optimal performance, greater workspace is needed, i.e.
*            LWORK >= 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS + 4 ) * NPS
*            ICTXT = DESCA( CTXT_ )
*            ANB = PJLAENV( ICTXT, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
*            SQNPC = INT( SQRT( REAL( NPROW * NPCOL ) ) )
*            NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
*
*            NUMROC is a ScaLAPACK tool functions;
*            PJLAENV is a ScaLAPACK envionmental inquiry function
*            MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*            the subroutine BLACS_GRIDINFO.
*
*
*  RWORK   (local workspace/local output) COMPLEX array,
*                                                  dimension (LRWORK)
*          On exit, RWORK( 1 ) returns the optimal LRWORK.
*
*  LRWORK  (local or global input) INTEGER
*          The dimension of the array RWORK.
*          LRWORK is local input and must be at least
*          LRWORK >= 1
*
*          For optimal performance, greater workspace is needed, i.e.
*            LRWORK >= MAX( 2 * N )
*
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*  A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
*  A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
*  The contents of sub( A ) on exit are illustrated by the following
*  examples with n = 5:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  d   e   v2  v3  v4 )              (  d                  )
*    (      d   e   v3  v4 )              (  e   d              )
*    (          d   e   v4 )              (  v1  e   d          )
*    (              d   e  )              (  v1  v2  e   d      )
*    (                  d  )              (  v1  v2  v3  e   d  )
*
*  where d and e denote diagonal and off-diagonal elements of T, and vi
*  denotes an element of the vector defining H(i).
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrix sub( A ) must verify some alignment proper-
*  ties, namely the following expression should be true:
*  ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA .AND. IROFFA.EQ.0 ) with
*  IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      CHARACTER          COLCTOP, ROWCTOP
      INTEGER            ANB, CTXTB, I, IACOL, IAROW, ICOFFA, ICTXT,
     $                   IINFO, INDB, INDRD, INDRE, INDTAU, INDW, IPW,
     $                   IROFFA, J, JB, JX, K, KK, LLRWORK, LLWORK,
     $                   LRWMIN, LWMIN, MINSZ, MYCOL, MYCOLB, MYROW,
     $                   MYROWB, NB, NP, NPCOL, NPCOLB, NPROW, NPROWB,
     $                   NPS, NQ, ONEPMIN, ONEPRMIN, SQNPC, TTLRWMIN,
     $                   TTLWMIN
*     ..
*     .. Local Arrays ..
      INTEGER            DESCB( DLEN_ ), DESCW( DLEN_ ), IDUM1( 3 ),
     $                   IDUM2( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GET, BLACS_GRIDEXIT, BLACS_GRIDINFO,
     $                   BLACS_GRIDINIT, CHETRD, CHK1MAT, DESCSET,
     $                   IGAMN2D, PCELSET, PCHER2K, PCHETD2, PCHETTRD,
     $                   PCHK1MAT, PCLAMR1D, PCLATRD, PCTRMR2D,
     $                   PSLAMR1D, PB_TOPGET, PB_TOPSET, PXERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            INDXG2L, INDXG2P, NUMROC, PJLAENV
      EXTERNAL           LSAME, INDXG2L, INDXG2P, NUMROC, PJLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, ICHAR, INT, MAX, MIN, MOD, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 600+CTXT_ )
      ELSE
         CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
         UPPER = LSAME( UPLO, 'U' )
         IF( INFO.EQ.0 ) THEN
            NB = DESCA( NB_ )
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IAROW = INDXG2P( IA, NB, MYROW, DESCA( RSRC_ ), NPROW )
            IACOL = INDXG2P( JA, NB, MYCOL, DESCA( CSRC_ ), NPCOL )
            NP = NUMROC( N, NB, MYROW, IAROW, NPROW )
            NQ = MAX( 1, NUMROC( N+JA-1, NB, MYCOL, DESCA( CSRC_ ),
     $           NPCOL ) )
            LWMIN = MAX( ( NP+1 )*NB, 3*NB )
            ANB = PJLAENV( ICTXT, 3, 'PCHETTRD', 'L', 0, 0, 0, 0 )
            MINSZ = PJLAENV( ICTXT, 5, 'PCHETTRD', 'L', 0, 0, 0, 0 )
            SQNPC = INT( SQRT( REAL( NPROW*NPCOL ) ) )
            NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
            TTLWMIN = 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS+2 )*NPS
            LRWMIN = 1
            TTLRWMIN = 2*NPS
*
            WORK( 1 ) = CMPLX( REAL( TTLWMIN ) )
            RWORK( 1 ) = REAL( TTLRWMIN )
            LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
            IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -1
*
*            The following two restrictions are not necessary provided
*            that either of the tailored codes are used.
*
            ELSE IF( IROFFA.NE.ICOFFA .OR. ICOFFA.NE.0 ) THEN
               INFO = -5
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 600+NB_ )
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -11
            ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -13
            END IF
         END IF
         IF( UPPER ) THEN
            IDUM1( 1 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'L' )
         END IF
         IDUM2( 1 ) = 1
         IF( LWORK.EQ.-1 ) THEN
            IDUM1( 2 ) = -1
         ELSE
            IDUM1( 2 ) = 1
         END IF
         IDUM2( 2 ) = 11
         IF( LRWORK.EQ.-1 ) THEN
            IDUM1( 3 ) = -1
         ELSE
            IDUM1( 3 ) = 1
         END IF
         IDUM2( 3 ) = 13
         CALL PCHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, 3, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCHENTRD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*
      ONEPMIN = N*N + 3*N + 1
      LLWORK = LWORK
      CALL IGAMN2D( ICTXT, 'A', ' ', 1, 1, LLWORK, 1, 1, -1, -1, -1,
     $              -1 )
*
      ONEPRMIN = 2*N
      LLRWORK = LRWORK
      CALL IGAMN2D( ICTXT, 'A', ' ', 1, 1, LLRWORK, 1, 1, -1, -1, -1,
     $              -1 )
*
*
*     Use the serial, LAPACK, code:  CTRD on small matrices if we
*     we have enough space.
*
      NPROWB = 0
      IF( ( N.LT.MINSZ .OR. SQNPC.EQ.1 ) .AND. LLWORK.GE.ONEPMIN .AND.
     $    LLRWORK.GE.ONEPRMIN .AND. .NOT.UPPER ) THEN
         NPROWB = 1
         NPS = N
      ELSE
         IF( LLWORK.GE.TTLWMIN .AND. LLRWORK.GE.TTLRWMIN .AND. .NOT.
     $       UPPER ) THEN
            NPROWB = SQNPC
         END IF
      END IF
*
      IF( NPROWB.GE.1 ) THEN
         NPCOLB = NPROWB
         SQNPC = NPROWB
         INDB = 1
         INDRD = 1
         INDRE = INDRD + NPS
         INDTAU = INDB + NPS*NPS
         INDW = INDTAU + NPS
         LLWORK = LLWORK - INDW + 1
*
         CALL BLACS_GET( ICTXT, 10, CTXTB )
         CALL BLACS_GRIDINIT( CTXTB, 'Row major', SQNPC, SQNPC )
         CALL BLACS_GRIDINFO( CTXTB, NPROWB, NPCOLB, MYROWB, MYCOLB )
         CALL DESCSET( DESCB, N, N, 1, 1, 0, 0, CTXTB, NPS )
*
         CALL PCTRMR2D( UPLO, 'N', N, N, A, IA, JA, DESCA, WORK( INDB ),
     $                  1, 1, DESCB, ICTXT )
*
*
*        Only those processors in context CTXTB are needed for a while
*
         IF( NPROWB.GT.0 ) THEN
*
            IF( NPROWB.EQ.1 ) THEN
               CALL CHETRD( UPLO, N, WORK( INDB ), NPS, RWORK( INDRD ),
     $                      RWORK( INDRE ), WORK( INDTAU ),
     $                      WORK( INDW ), LLWORK, INFO )
            ELSE
*
               CALL PCHETTRD( 'L', N, WORK( INDB ), 1, 1, DESCB,
     $                        RWORK( INDRD ), RWORK( INDRE ),
     $                        WORK( INDTAU ), WORK( INDW ), LLWORK,
     $                        INFO )
*
            END IF
         END IF
*
*           All processors participate in moving the data back to the
*           way that PCHENTRD expects it.
*
         CALL PSLAMR1D( N-1, RWORK( INDRE ), 1, 1, DESCB, E, 1, JA,
     $                  DESCA )
*
         CALL PSLAMR1D( N, RWORK( INDRD ), 1, 1, DESCB, D, 1, JA,
     $                  DESCA )
*
         CALL PCLAMR1D( N, WORK( INDTAU ), 1, 1, DESCB, TAU, 1, JA,
     $                  DESCA )
*
         CALL PCTRMR2D( UPLO, 'N', N, N, WORK( INDB ), 1, 1, DESCB, A,
     $                  IA, JA, DESCA, ICTXT )
*
         IF( MYROWB.GE.0 )
     $      CALL BLACS_GRIDEXIT( CTXTB )
*
      ELSE
*
         CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
         CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
         CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', '1-tree' )
         CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise', '1-tree' )
*
         IPW = NP*NB + 1
*
         IF( UPPER ) THEN
*
*        Reduce the upper triangle of sub( A ).
*
            KK = MOD( JA+N-1, NB )
            IF( KK.EQ.0 )
     $         KK = NB
            CALL DESCSET( DESCW, N, NB, NB, NB, IAROW,
     $                    INDXG2P( JA+N-KK, NB, MYCOL, DESCA( CSRC_ ),
     $                    NPCOL ), ICTXT, MAX( 1, NP ) )
*
            DO 10 K = N - KK + 1, NB + 1, -NB
               JB = MIN( N-K+1, NB )
               I = IA + K - 1
               J = JA + K - 1
*
*           Reduce columns I:I+NB-1 to tridiagonal form and form
*           the matrix W which is needed to update the unreduced part of
*           the matrix
*
               CALL PCLATRD( UPLO, K+JB-1, JB, A, IA, JA, DESCA, D, E,
     $                       TAU, WORK, 1, 1, DESCW, WORK( IPW ) )
*
*           Update the unreduced submatrix A(IA:I-1,JA:J-1), using an
*           update of the form:
*           A(IA:I-1,JA:J-1) := A(IA:I-1,JA:J-1) - V*W' - W*V'
*
               CALL PCHER2K( UPLO, 'No transpose', K-1, JB, -CONE, A,
     $                       IA, J, DESCA, WORK, 1, 1, DESCW, ONE, A,
     $                       IA, JA, DESCA )
*
*           Copy last superdiagonal element back into sub( A )
*
               JX = MIN( INDXG2L( J, NB, 0, IACOL, NPCOL ), NQ )
               CALL PCELSET( A, I-1, J, DESCA, CMPLX( E( JX ) ) )
*
               DESCW( CSRC_ ) = MOD( DESCW( CSRC_ )+NPCOL-1, NPCOL )
*
   10       CONTINUE
*
*        Use unblocked code to reduce the last or only block
*
            CALL PCHETD2( UPLO, MIN( N, NB ), A, IA, JA, DESCA, D, E,
     $                    TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*        Reduce the lower triangle of sub( A )
*
            KK = MOD( JA+N-1, NB )
            IF( KK.EQ.0 )
     $         KK = NB
            CALL DESCSET( DESCW, N, NB, NB, NB, IAROW, IACOL, ICTXT,
     $                    MAX( 1, NP ) )
*
            DO 20 K = 1, N - NB, NB
               I = IA + K - 1
               J = JA + K - 1
*
*           Reduce columns I:I+NB-1 to tridiagonal form and form
*           the matrix W which is needed to update the unreduced part
*           of the matrix
*
               CALL PCLATRD( UPLO, N-K+1, NB, A, I, J, DESCA, D, E, TAU,
     $                       WORK, K, 1, DESCW, WORK( IPW ) )
*
*           Update the unreduced submatrix A(I+NB:IA+N-1,I+NB:IA+N-1),
*           using an update of the form: A(I+NB:IA+N-1,I+NB:IA+N-1) :=
*           A(I+NB:IA+N-1,I+NB:IA+N-1) - V*W' - W*V'
*
               CALL PCHER2K( UPLO, 'No transpose', N-K-NB+1, NB, -CONE,
     $                       A, I+NB, J, DESCA, WORK, K+NB, 1, DESCW,
     $                       ONE, A, I+NB, J+NB, DESCA )
*
*           Copy last subdiagonal element back into sub( A )
*
               JX = MIN( INDXG2L( J+NB-1, NB, 0, IACOL, NPCOL ), NQ )
               CALL PCELSET( A, I+NB, J+NB-1, DESCA, CMPLX( E( JX ) ) )
*
               DESCW( CSRC_ ) = MOD( DESCW( CSRC_ )+1, NPCOL )
*
   20       CONTINUE
*
*        Use unblocked code to reduce the last or only block
*
            CALL PCHETD2( UPLO, KK, A, IA+K-1, JA+K-1, DESCA, D, E, TAU,
     $                    WORK, LWORK, IINFO )
         END IF
*
         CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
         CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
*
      END IF
*
      WORK( 1 ) = CMPLX( REAL( TTLWMIN ) )
      RWORK( 1 ) = REAL( TTLRWMIN )
*
      RETURN
*
*     End of PCHENTRD
*
      END