File: pclacgv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (188 lines) | stat: -rw-r--r-- 6,916 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      SUBROUTINE PCLACGV( N, X, IX, JX, DESCX, INCX )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            INCX, IX, JX, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCX( * )
      COMPLEX            X( * )
*     ..
*
*  Purpose
*  =======
*
*  PCLACGV conjugates a complex vector of length N, sub( X ), where
*  sub( X ) denotes X(IX,JX:JX+N-1) if INCX = DESCX( M_ ) and
*  X(IX:IX+N-1,JX) if INCX = 1, and
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Because vectors may be viewed as a subclass of matrices, a
*  distributed vector is considered to be a distributed matrix.
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The length of the distributed vector sub( X ).
*
*  X       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_X,*).
*          On entry the vector to be conjugated
*             x( i )  = X(IX+(JX-1)*M_X +(i-1)*INCX ), 1 <= i <= N.
*          On exit the conjugated vector.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  INCX    (global input) INTEGER
*          The global increment for the elements of X. Only two values
*          of INCX are supported in this version, namely 1 and M_X.
*          INCX must not be zero.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOFFX, ICTXT, IIX, IOFFX, IROFFX, IXCOL,
     $                   IXROW, JJX, LDX, MYCOL, MYROW, NP, NPCOL,
     $                   NPROW, NQ
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, INFOG2L
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      EXTERNAL           NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCX( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Figure local indexes
*
      CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
     $              IIX, JJX, IXROW, IXCOL )
*
      LDX = DESCX( LLD_ )
      IF( INCX.EQ.DESCX( M_ ) ) THEN
*
*        sub( X ) is rowwise distributed.
*
         IF( MYROW.NE.IXROW )
     $      RETURN
         ICOFFX = MOD( JX-1, DESCX( NB_ ) )
         NQ = NUMROC( N+ICOFFX, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
         IF( MYCOL.EQ.IXCOL )
     $      NQ = NQ - ICOFFX
*
         IF( NQ.GT.0 ) THEN
            IOFFX = IIX+(JJX-1)*LDX
            DO 10 I = 1, NQ
               X( IOFFX ) = CONJG( X( IOFFX ) )
               IOFFX = IOFFX + LDX
   10       CONTINUE
         END IF
*
      ELSE IF( INCX.EQ.1 ) THEN
*
*        sub( X ) is columnwise distributed.
*
         IF( MYCOL.NE.IXCOL )
     $      RETURN
         IROFFX = MOD( IX-1, DESCX( MB_ ) )
         NP = NUMROC( N+IROFFX, DESCX( MB_ ), MYROW, IXROW, NPROW )
         IF( MYROW.EQ.IXROW )
     $      NP = NP - IROFFX
*
         IF( NP.GT.0 ) THEN
            IOFFX = IIX+(JJX-1)*LDX
            DO 20 I = IOFFX, IOFFX+NP-1
              X( I ) = CONJG( X( I ) )
   20       CONTINUE
         END IF
*
      END IF
*
      RETURN
*
*     End of PCLACGV
*
      END