1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
SUBROUTINE PCLACGV( N, X, IX, JX, DESCX, INCX )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER INCX, IX, JX, N
* ..
* .. Array Arguments ..
INTEGER DESCX( * )
COMPLEX X( * )
* ..
*
* Purpose
* =======
*
* PCLACGV conjugates a complex vector of length N, sub( X ), where
* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = DESCX( M_ ) and
* X(IX:IX+N-1,JX) if INCX = 1, and
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Because vectors may be viewed as a subclass of matrices, a
* distributed vector is considered to be a distributed matrix.
*
* Arguments
* =========
*
* N (global input) INTEGER
* The length of the distributed vector sub( X ).
*
* X (local input/local output) COMPLEX pointer into the
* local memory to an array of dimension (LLD_X,*).
* On entry the vector to be conjugated
* x( i ) = X(IX+(JX-1)*M_X +(i-1)*INCX ), 1 <= i <= N.
* On exit the conjugated vector.
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* INCX (global input) INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
* INCX must not be zero.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER I, ICOFFX, ICTXT, IIX, IOFFX, IROFFX, IXCOL,
$ IXROW, JJX, LDX, MYCOL, MYROW, NP, NPCOL,
$ NPROW, NQ
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L
* ..
* .. External Functions ..
INTEGER NUMROC
EXTERNAL NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCX( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Figure local indexes
*
CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
$ IIX, JJX, IXROW, IXCOL )
*
LDX = DESCX( LLD_ )
IF( INCX.EQ.DESCX( M_ ) ) THEN
*
* sub( X ) is rowwise distributed.
*
IF( MYROW.NE.IXROW )
$ RETURN
ICOFFX = MOD( JX-1, DESCX( NB_ ) )
NQ = NUMROC( N+ICOFFX, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
IF( MYCOL.EQ.IXCOL )
$ NQ = NQ - ICOFFX
*
IF( NQ.GT.0 ) THEN
IOFFX = IIX+(JJX-1)*LDX
DO 10 I = 1, NQ
X( IOFFX ) = CONJG( X( IOFFX ) )
IOFFX = IOFFX + LDX
10 CONTINUE
END IF
*
ELSE IF( INCX.EQ.1 ) THEN
*
* sub( X ) is columnwise distributed.
*
IF( MYCOL.NE.IXCOL )
$ RETURN
IROFFX = MOD( IX-1, DESCX( MB_ ) )
NP = NUMROC( N+IROFFX, DESCX( MB_ ), MYROW, IXROW, NPROW )
IF( MYROW.EQ.IXROW )
$ NP = NP - IROFFX
*
IF( NP.GT.0 ) THEN
IOFFX = IIX+(JJX-1)*LDX
DO 20 I = IOFFX, IOFFX+NP-1
X( I ) = CONJG( X( I ) )
20 CONTINUE
END IF
*
END IF
*
RETURN
*
* End of PCLACGV
*
END
|