File: pclarft.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (543 lines) | stat: -rw-r--r-- 18,990 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
      SUBROUTINE PCLARFT( DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU,
     $                    T, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            IV, JV, K, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCV( * )
      COMPLEX            TAU( * ), T( * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCLARFT forms the triangular factor T of a complex block reflector H
*  of order n, which is defined as a product of k elementary reflectors.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the distributed matrix V, and
*
*     H  =  I - V * T * V'
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the distributed matrix V, and
*
*     H  =  I - V' * T * V
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  DIRECT  (global input) CHARACTER*1
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (global input) CHARACTER*1
*          Specifies how the vectors which define the elementary
*          reflectors are stored (see also Further Details):
*          = 'C': columnwise
*          = 'R': rowwise
*
*  N       (global input) INTEGER
*          The order of the block reflector H. N >= 0.
*
*  K       (global input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). 1 <= K <= MB_V (= NB_V).
*
*  V       (input/output) COMPLEX pointer into the local memory
*          to an array of local dimension (LOCr(IV+N-1),LOCc(JV+K-1))
*          if STOREV = 'C', and (LOCr(IV+K-1),LOCc(JV+N-1)) if
*          STOREV = 'R'. The distributed matrix V contains the
*          Householder vectors. See further details.
*
*  IV      (global input) INTEGER
*          The row index in the global array V indicating the first
*          row of sub( V ).
*
*  JV      (global input) INTEGER
*          The column index in the global array V indicating the
*          first column of sub( V ).
*
*  DESCV   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix V.
*
*  TAU     (local input) COMPLEX, array, dimension LOCr(IV+K-1)
*          if INCV = M_V, and LOCc(JV+K-1) otherwise. This array
*          contains the Householder scalars related to the Householder
*          vectors.  TAU is tied to the distributed matrix V.
*
*  T       (local output) COMPLEX array, dimension (NB_V,NB_V)
*          if STOREV = 'Col', and (MB_V,MB_V) otherwise. It contains
*          the k-by-k triangular factor of the block reflector asso-
*          ciated with V. If DIRECT = 'F', T is upper triangular;
*          if DIRECT = 'B', T is lower triangular.
*
*  WORK    (local workspace) COMPLEX array,
*                                          dimension (K*(K-1)/2)
*
*  Further Details
*  ===============
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':   DIRECT = 'F' and STOREV = 'R':
*
*  V( IV:IV+N-1,    (  1       )    V( IV:IV+K-1,    (  1 v1 v1 v1 v1 )
*     JV:JV+K-1 ) = ( v1  1    )       JV:JV+N-1 ) = (     1 v2 v2 v2 )
*                   ( v1 v2  1 )                     (        1 v3 v3 )
*                   ( v1 v2 v3 )
*                   ( v1 v2 v3 )
*
*  DIRECT = 'B' and STOREV = 'C':   DIRECT = 'B' and STOREV = 'R':
*
*  V( IV:IV+N-1,    ( v1 v2 v3 )    V( IV:IV+K-1,    ( v1 v1  1       )
*     JV:JV+K-1 ) = ( v1 v2 v3 )       JV:JV+N-1 ) = ( v2 v2 v2  1    )
*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
*                   (     1 v3 )
*                   (        1 )
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                     ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            FORWARD
      INTEGER            ICOFF, ICTXT, II, IIV, IROFF, IVCOL, IVROW,
     $                   ITMP0, ITMP1, IW, JJ, JJV, LDV, MICOL, MIROW,
     $                   MYCOL, MYROW, NP, NPCOL, NPROW, NQ
      COMPLEX            VII
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CCOPY, CGEMV, CGSUM2D,
     $                   CLACGV, CLASET, CTRMV, INFOG2L
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            INDXG2P, NUMROC
      EXTERNAL           INDXG2P, LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 .OR. K.LE.0 )
     $   RETURN
*
      ICTXT = DESCV( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      FORWARD = LSAME( DIRECT, 'F' )
      CALL INFOG2L( IV, JV, DESCV, NPROW, NPCOL, MYROW, MYCOL,
     $              IIV, JJV, IVROW, IVCOL )
*
      IF( LSAME( STOREV, 'C' ) .AND. MYCOL.EQ.IVCOL ) THEN
*
         IW = 1
         LDV = DESCV( LLD_ )
         IROFF = MOD( IV-1, DESCV( MB_ ) )
*
         IF( FORWARD ) THEN
*
*           DIRECT = 'Forward', STOREV = 'Columnwise'
*
            NP = NUMROC( N+IROFF, DESCV( MB_ ), MYROW, IVROW, NPROW )
            IF( MYROW.EQ.IVROW ) THEN
               NP = NP - IROFF
               II = IIV  + 1
            ELSE
               II = IIV
            END IF
            IF( IROFF+1.EQ.DESCV( MB_ ) ) THEN
               MIROW = MOD( IVROW+1, NPROW )
            ELSE
               MIROW = IVROW
            END IF
            ITMP0 = 0
*
            DO 10 JJ = JJV+1, JJV+K-1
*
               IF( MYROW.EQ.MIROW ) THEN
                  VII = V( II+(JJ-1)*LDV )
                  V( II+(JJ-1)*LDV ) = ONE
               END IF
*
*              T(1:i-1,i) = -tau( jv+i-1 ) *
*              V(iv+i-1:iv+n-1,jv:jv+i-2)' * V(iv+i-1:iv+n-1,jv+i-1)
*
               ITMP0 = ITMP0 + 1
               IF( NP-II+IIV.GT.0 ) THEN
                  CALL CGEMV( 'Conjugate transpose', NP-II+IIV, ITMP0,
     $                        -TAU( JJ ), V( II+(JJV-1)*LDV ), LDV,
     $                        V( II+(JJ-1)*LDV ), 1, ZERO,
     $                        WORK( IW ), 1 )
               ELSE
                  CALL CLASET( 'All', ITMP0, 1, ZERO, ZERO, WORK( IW ),
     $                         ITMP0 )
               END IF
*
               IW = IW + ITMP0
               IF( MYROW.EQ.MIROW ) THEN
                  V( II+(JJ-1)*LDV ) = VII
                  II = II + 1
               END IF
*
               IF( MOD( IV+ITMP0, DESCV( MB_ ) ).EQ.0 )
     $            MIROW = MOD( MIROW+1, NPROW )
*
   10       CONTINUE
*
            CALL CGSUM2D( ICTXT, 'Columnwise', ' ', IW-1, 1, WORK, IW-1,
     $                    IVROW, MYCOL )
*
            IF( MYROW.EQ.IVROW ) THEN
*
               IW = 1
               ITMP0 = 0
               ITMP1 = 1
*
               T( ITMP1 ) = TAU( JJV )
*
               DO 20 JJ = JJV+1, JJV+K-1
*
*                 T(1:j-1,j) = T(1:j-1,1:j-1) * T(1:j-1,j)
*
                  ITMP0 = ITMP0 + 1
                  ITMP1 = ITMP1 + DESCV( NB_ )
                  CALL CCOPY( ITMP0, WORK( IW ), 1, T( ITMP1 ), 1 )
                  IW = IW + ITMP0
*
                  CALL CTRMV( 'Upper', 'No transpose', 'Non-unit',
     $                        ITMP0, T, DESCV( NB_ ), T( ITMP1 ), 1 )
                  T(ITMP1+ITMP0) = TAU( JJ )
*
   20          CONTINUE
*
            END IF
*
         ELSE
*
*           DIRECT = 'Backward', STOREV = 'Columnwise'
*
            NP = NUMROC( N+IROFF-1, DESCV( MB_ ), MYROW, IVROW, NPROW )
            IF( MYROW.EQ.IVROW )
     $         NP = NP - IROFF
            MIROW = INDXG2P( IV+N-2, DESCV( MB_ ), MYROW,
     $                       DESCV( RSRC_ ), NPROW )
            II = IIV + NP - 1
            ITMP0 = 0
*
            DO 30 JJ = JJV+K-2, JJV, -1
*
               IF( MYROW.EQ.MIROW ) THEN
                  VII = V( II+(JJ-1)*LDV )
                  V( II+(JJ-1)*LDV ) = ONE
               END IF
*
*              T(1:i-1,i) = -tau( jv+i-1 ) *
*              V(iv:iv+n-k+i-1,jv+i:jv+k-1)' * V(iv:iv+n-k+i-1,jv+i-1)
*
               ITMP0 = ITMP0 + 1
               IF( II-IIV+1.GT.0 ) THEN
                  CALL CGEMV( 'Conjugate transpose', II-IIV+1, ITMP0,
     $                        -TAU( JJ ), V( IIV+JJ*LDV ), LDV,
     $                        V( IIV+(JJ-1)*LDV ), 1, ZERO,
     $                        WORK( IW ), 1 )
               ELSE
                  CALL CLASET( 'All', ITMP0, 1, ZERO, ZERO, WORK( IW ),
     $                         ITMP0 )
               END IF
*
               IW = IW + ITMP0
               IF( MYROW.EQ.MIROW ) THEN
                  V( II+(JJ-1)*LDV ) = VII
                  II = II - 1
               END IF
*
               IF( MOD( IV+N-ITMP0-2, DESCV(MB_) ).EQ.0 )
     $            MIROW = MOD( MIROW+NPROW-1, NPROW )
*
   30       CONTINUE
*
            CALL CGSUM2D( ICTXT, 'Columnwise', ' ', IW-1, 1, WORK, IW-1,
     $                    IVROW, MYCOL )
*
            IF( MYROW.EQ.IVROW ) THEN
*
               IW = 1
               ITMP0 = 0
               ITMP1 = K + 1 + (K-1) * DESCV( NB_ )
*
               T( ITMP1-1 ) = TAU( JJV+K-1 )
*
               DO 40 JJ = JJV+K-2, JJV, -1
*
*                 T(j+1:k,j) = T(j+1:k,j+1:k) * T(j+1:k,j)
*
                  ITMP0 = ITMP0 + 1
                  ITMP1 = ITMP1 - DESCV( NB_ ) - 1
                  CALL CCOPY( ITMP0, WORK( IW ), 1, T( ITMP1 ), 1 )
                  IW = IW + ITMP0
*
                  CALL CTRMV( 'Lower', 'No transpose', 'Non-unit',
     $                        ITMP0, T( ITMP1+DESCV( NB_ ) ),
     $                        DESCV( NB_ ), T( ITMP1 ), 1 )
                  T( ITMP1-1 ) = TAU( JJ )
*
   40          CONTINUE
*
            END IF
*
         END IF
*
      ELSE IF( LSAME( STOREV, 'R' ) .AND. MYROW.EQ.IVROW ) THEN
*
         IW = 1
         LDV = DESCV( LLD_ )
         ICOFF = MOD( JV-1, DESCV( NB_ ) )
*
         IF( FORWARD ) THEN
*
*           DIRECT = 'Forward', STOREV = 'Rowwise'
*
            NQ = NUMROC( N+ICOFF, DESCV( NB_ ), MYCOL, IVCOL, NPCOL )
            IF( MYCOL.EQ.IVCOL ) THEN
               NQ = NQ - ICOFF
               JJ = JJV  + 1
            ELSE
               JJ = JJV
            END IF
            IF( ICOFF+1.EQ.DESCV( NB_ ) ) THEN
               MICOL = MOD( IVCOL+1, NPCOL )
            ELSE
               MICOL = IVCOL
            END IF
            ITMP0 = 0
*
            DO 50 II = IIV+1, IIV+K-1
*
               IF( MYCOL.EQ.MICOL ) THEN
                  VII = V( II+(JJ-1)*LDV )
                  V( II+(JJ-1)*LDV ) = ONE
               END IF
*
*              T(1:i-1,i) = -tau( iv+i-1 ) *
*              V(iv+i-1,jv+i-1:jv+n-1) * V(iv:iv+i-2,jv+i-1:jv+n-1)'
*
               ITMP0 = ITMP0 + 1
               IF( NQ-JJ+JJV.GT.0 ) THEN
                  CALL CLACGV( NQ-JJ+JJV, V( II+(JJ-1)*LDV ), LDV )
                  CALL CGEMV( 'No transpose', ITMP0, NQ-JJ+JJV,
     $                        -TAU(II), V( IIV+(JJ-1)*LDV ), LDV,
     $                        V( II+(JJ-1)*LDV ), LDV, ZERO,
     $                        WORK( IW ), 1 )
                  CALL CLACGV( NQ-JJ+JJV, V( II+(JJ-1)*LDV ), LDV )
               ELSE
                  CALL CLASET( 'All', ITMP0, 1, ZERO, ZERO,
     $                         WORK( IW ), ITMP0 )
               END IF
*
               IW = IW + ITMP0
               IF( MYCOL.EQ.MICOL ) THEN
                  V( II+(JJ-1)*LDV ) = VII
                  JJ = JJ + 1
               END IF
*
               IF( MOD( JV+ITMP0, DESCV( NB_ ) ).EQ.0 )
     $            MICOL = MOD( MICOL+1, NPCOL )
*
   50       CONTINUE
*
            CALL CGSUM2D( ICTXT, 'Rowwise', ' ', IW-1, 1, WORK, IW-1,
     $                    MYROW, IVCOL )
*
            IF( MYCOL.EQ.IVCOL ) THEN
*
               IW = 1
               ITMP0 = 0
               ITMP1 = 1
*
               T( ITMP1 ) = TAU( IIV )
*
               DO 60 II = IIV+1, IIV+K-1
*
*                 T(1:i-1,i) = T(1:i-1,1:i-1) * T(1:i-1,i)
*
                  ITMP0 = ITMP0 + 1
                  ITMP1 = ITMP1 + DESCV( MB_ )
                  CALL CCOPY( ITMP0, WORK( IW ), 1, T( ITMP1 ), 1 )
                  IW = IW + ITMP0
*
                  CALL CTRMV( 'Upper', 'No transpose', 'Non-unit',
     $                        ITMP0, T, DESCV( MB_ ), T( ITMP1 ), 1 )
                  T( ITMP1+ITMP0 ) = TAU( II )
*
   60          CONTINUE
*
            END IF
*
         ELSE
*
*           DIRECT = 'Backward', STOREV = 'Rowwise'
*
            NQ = NUMROC( N+ICOFF-1, DESCV( NB_ ), MYCOL, IVCOL, NPCOL )
            IF( MYCOL.EQ.IVCOL )
     $         NQ = NQ - ICOFF
            MICOL = INDXG2P( JV+N-2, DESCV( NB_ ), MYCOL,
     $                       DESCV( CSRC_ ), NPCOL )
            JJ = JJV + NQ - 1
            ITMP0 = 0
*
            DO 70 II = IIV+K-2, IIV, -1
*
               IF( MYCOL.EQ.MICOL ) THEN
                  VII = V( II+(JJ-1)*LDV )
                  V( II+(JJ-1)*LDV ) = ONE
               END IF
*
*              T(i+1:k,i) = -tau( iv+i-1 ) *
*              V(iv+i:iv+k-1,jv:jv+n-k+i-1)' * V(iv+i-1,jv:jv+n-k+i-1)'
*
               ITMP0 = ITMP0 + 1
               IF( JJ-JJV+1.GT.0 ) THEN
                  CALL CLACGV( JJ-JJV+1, V( II+(JJV-1)*LDV ), LDV )
                  CALL CGEMV( 'No transpose', ITMP0, JJ-JJV+1,
     $                        -TAU( II ), V( II+1+(JJV-1)*LDV ), LDV,
     $                        V( II+(JJV-1)*LDV ), LDV, ZERO,
     $                        WORK( IW ), 1 )
                  CALL CLACGV( JJ-JJV+1, V( II+(JJV-1)*LDV ), LDV )
               ELSE
                  CALL CLASET( 'All', ITMP0, 1, ZERO, ZERO,
     $                         WORK( IW ), ITMP0 )
               END IF
*
               IW = IW + ITMP0
               IF( MYCOL.EQ.MICOL ) THEN
                  V( II+(JJ-1)*LDV ) = VII
                  JJ = JJ - 1
               END IF
*
               IF( MOD( JV+N-ITMP0-2, DESCV( NB_ ) ).EQ.0 )
     $            MICOL = MOD( MICOL+NPCOL-1, NPCOL )
*
   70       CONTINUE
*
            CALL CGSUM2D( ICTXT, 'Rowwise', ' ', IW-1, 1, WORK, IW-1,
     $                    MYROW, IVCOL )
*
            IF( MYCOL.EQ.IVCOL ) THEN
*
               IW = 1
               ITMP0 = 0
               ITMP1 = K + 1 + (K-1) * DESCV( MB_ )
*
               T( ITMP1-1 ) = TAU( IIV+K-1 )
*
               DO 80 II = IIV+K-2, IIV, -1
*
*                 T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
*
                  ITMP0 = ITMP0 + 1
                  ITMP1 = ITMP1 - DESCV( MB_ ) - 1
                  CALL CCOPY( ITMP0, WORK( IW ), 1, T( ITMP1 ), 1 )
                  IW = IW + ITMP0
*
                  CALL CTRMV( 'Lower', 'No transpose', 'Non-unit',
     $                        ITMP0, T( ITMP1+DESCV( MB_ ) ),
     $                        DESCV( MB_ ), T( ITMP1 ), 1 )
                  T( ITMP1-1 ) = TAU( II )
*
   80          CONTINUE
*
            END IF
*
         END IF
*
      END IF
*
      RETURN
*
*     End of PCLARFT
*
      END