1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
SUBROUTINE PCLARZT( DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU,
$ T, WORK )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER DIRECT, STOREV
INTEGER IV, JV, K, N
* ..
* .. Array Arguments ..
INTEGER DESCV( * )
COMPLEX TAU( * ), T( * ), V( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PCLARZT forms the triangular factor T of a complex block reflector
* H of order > n, which is defined as a product of k elementary
* reflectors as returned by PCTZRZF.
*
* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
* If STOREV = 'C', the vector which defines the elementary reflector
* H(i) is stored in the i-th column of the array V, and
*
* H = I - V * T * V'
*
* If STOREV = 'R', the vector which defines the elementary reflector
* H(i) is stored in the i-th row of the array V, and
*
* H = I - V' * T * V
*
* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* DIRECT (global input) CHARACTER
* Specifies the order in which the elementary reflectors are
* multiplied to form the block reflector:
* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
* = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (global input) CHARACTER
* Specifies how the vectors which define the elementary
* reflectors are stored (see also Further Details):
* = 'C': columnwise (not supported yet)
* = 'R': rowwise
*
* N (global input) INTEGER
* The number of meaningful entries of the block reflector H.
* N >= 0.
*
* K (global input) INTEGER
* The order of the triangular factor T (= the number of
* elementary reflectors). 1 <= K <= MB_V (= NB_V).
*
* V (input/output) COMPLEX pointer into the local memory
* to an array of local dimension (LOCr(IV+K-1),LOCc(JV+N-1)).
* The distributed matrix V contains the Householder vectors.
* See further details.
*
* IV (global input) INTEGER
* The row index in the global array V indicating the first
* row of sub( V ).
*
* JV (global input) INTEGER
* The column index in the global array V indicating the
* first column of sub( V ).
*
* DESCV (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix V.
*
* TAU (local input) COMPLEX, array, dimension LOCr(IV+K-1)
* if INCV = M_V, and LOCc(JV+K-1) otherwise. This array
* contains the Householder scalars related to the Householder
* vectors. TAU is tied to the distributed matrix V.
*
* T (local output) COMPLEX array, dimension (MB_V,MB_V)
* It contains the k-by-k triangular factor of the block
* reflector associated with V. T is lower triangular.
*
* WORK (local workspace) COMPLEX array,
* dimension (K*(K-1)/2)
*
* Further Details
* ===============
*
* The shape of the matrix V and the storage of the vectors which define
* the H(i) is best illustrated by the following example with n = 5 and
* k = 3. The elements equal to 1 are not stored; the corresponding
* array elements are modified but restored on exit. The rest of the
* array is not used.
*
* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
*
* ______V_____
* ( v1 v2 v3 ) / \
* ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
* V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
* ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
* ( v1 v2 v3 )
* . . .
* . . .
* 1 . .
* 1 .
* 1
*
* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
*
* ______V_____
* 1 / \
* . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
* . . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
* . . . ( . . 1 . . v3 v3 v3 v3 v3 )
* . . .
* ( v1 v2 v3 )
* ( v1 v2 v3 )
* V = ( v1 v2 v3 )
* ( v1 v2 v3 )
* ( v1 v2 v3 )
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER ICOFF, ICTXT, II, IIV, INFO, IVCOL, IVROW,
$ ITMP0, ITMP1, IW, JJV, LDV, MYCOL, MYROW,
$ NPCOL, NPROW, NQ
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GRIDINFO, CCOPY, CGEMV,
$ CGSUM2D, CLACGV, CLASET, CTRMV,
$ INFOG2L, PXERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC
EXTERNAL LSAME, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCV( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Check for currently supported options
*
INFO = 0
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PCLARZT', -INFO )
CALL BLACS_ABORT( ICTXT, 1 )
RETURN
END IF
*
CALL INFOG2L( IV, JV, DESCV, NPROW, NPCOL, MYROW, MYCOL,
$ IIV, JJV, IVROW, IVCOL )
*
IF( MYROW.EQ.IVROW ) THEN
IW = 1
ITMP0 = 0
LDV = DESCV( LLD_ )
ICOFF = MOD( JV-1, DESCV( NB_ ) )
NQ = NUMROC( N+ICOFF, DESCV( NB_ ), MYCOL, IVCOL, NPCOL )
IF( MYCOL.EQ.IVCOL )
$ NQ = NQ - ICOFF
*
DO 10 II = IIV+K-2, IIV, -1
*
* T(i+1:k,i) = -tau( iv+i-1 ) *
* V(iv+i:iv+k-1,jv:jv+n-1) * V(iv+i-1,jv:jv+n-1)'
*
ITMP0 = ITMP0 + 1
IF( NQ.GT.0 ) THEN
CALL CLACGV( NQ, V( II+(JJV-1)*LDV ), LDV )
CALL CGEMV( 'No transpose', ITMP0, NQ, -TAU( II ),
$ V( II+1+(JJV-1)*LDV ), LDV,
$ V( II+(JJV-1)*LDV ), LDV, ZERO, WORK( IW ),
$ 1 )
CALL CLACGV( NQ, V( II+(JJV-1)*LDV ), LDV )
ELSE
CALL CLASET( 'All', ITMP0, 1, ZERO, ZERO, WORK( IW ),
$ ITMP0 )
END IF
IW = IW + ITMP0
*
10 CONTINUE
*
CALL CGSUM2D( ICTXT, 'Rowwise', ' ', IW-1, 1, WORK, IW-1,
$ MYROW, IVCOL )
*
IF( MYCOL.EQ.IVCOL ) THEN
*
IW = 1
ITMP0 = 0
ITMP1 = K + 1 + (K-1) * DESCV( MB_ )
*
T( ITMP1-1 ) = TAU( IIV+K-1 )
*
DO 20 II = IIV+K-2, IIV, -1
*
* T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
*
ITMP0 = ITMP0 + 1
ITMP1 = ITMP1 - DESCV( MB_ ) - 1
CALL CCOPY( ITMP0, WORK( IW ), 1, T( ITMP1 ), 1 )
IW = IW + ITMP0
*
CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', ITMP0,
$ T( ITMP1+DESCV( MB_ ) ), DESCV( MB_ ),
$ T( ITMP1 ), 1 )
T( ITMP1-1 ) = TAU( II )
*
20 CONTINUE
*
END IF
*
END IF
*
RETURN
*
* End of PCLARZT
*
END
|