File: pclatrz.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (255 lines) | stat: -rw-r--r-- 9,676 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      SUBROUTINE PCLATRZ( M, N, L, A, IA, JA, DESCA, TAU, WORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      INTEGER            IA, JA, L, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      COMPLEX            A( * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCLATRZ reduces the M-by-N ( M<=N ) complex upper trapezoidal
*  matrix sub( A ) = [A(IA:IA+M-1,JA:JA+M-1) A(IA:IA+M-1,JA+N-L:JA+N-1)]
*  to upper triangular form by means of unitary transformations.
*
*  The upper trapezoidal matrix sub( A ) is factored as
*
*     sub( A ) = ( R  0 ) * Z,
*
*  where Z is an N-by-N unitary matrix and R is an M-by-M upper
*  triangular matrix.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  L       (global input) INTEGER
*          The columns of the distributed submatrix sub( A ) containing
*          the meaningful part of the Householder reflectors. L > 0.
*
*  A       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, the local pieces of the M-by-N distributed matrix
*          sub( A ) which is to be factored. On exit, the leading M-by-M
*          upper triangular part of sub( A ) contains the upper trian-
*          gular matrix R, and elements N-L+1 to N of the first M rows
*          of sub( A ), with the array TAU, represent the unitary matrix
*          Z as a product of M elementary reflectors.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  TAU     (local output) COMPLEX, array, dimension LOCr(IA+M-1)
*          This array contains the scalar factors of the elementary
*          reflectors. TAU is tied to the distributed matrix A.
*
*  WORK    (local workspace) COMPLEX array, dimension (LWORK)
*          LWORK >= Nq0 + MAX( 1, Mp0 ), where
*
*          IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Mp0   = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ),
*          Nq0   = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ),
*
*          and NUMROC, INDXG2P are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*  Further Details
*  ===============
*
*  The  factorization is obtained by Householder's method.  The kth
*  transformation matrix, Z( k ), whose conjugate transpose is used to
*  introduce zeros into the (m - k + 1)th row of sub( A ), is given in
*  the form
*
*     Z( k ) = ( I     0   ),
*              ( 0  T( k ) )
*
*  where
*
*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
*                                                 (   0    )
*                                                 ( z( k ) )
*
*  tau is a scalar and z( k ) is an ( n - m ) element vector.
*  tau and z( k ) are chosen to annihilate the elements of the kth row
*  of sub( A ).
*
*  The scalar tau is returned in the kth element of TAU and the vector
*  u( k ) in the kth row of sub( A ), such that the elements of z( k )
*  are in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned
*  in the upper triangular part of sub( A ).
*
*  Z is given by
*
*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                     ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IAROW, ICTXT, II, J, J1, MP, MYCOL, MYROW,
     $                   NPCOL, NPROW
      COMPLEX            AII
*     ..
*     .. Local Arrays ..
      INTEGER            DESCTAU( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DESCSET, INFOG1L, PCELSET, PCLACGV,
     $                   PCLARFG, PCLARZ
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      EXTERNAL           NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      MP = NUMROC( IA+M-1, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $             NPROW )
*
      CALL DESCSET( DESCTAU, DESCA( M_ ), 1, DESCA( MB_ ), 1,
     $              DESCA( RSRC_ ), MYCOL, ICTXT, MAX( 1, MP ) )
*
      IF( M.EQ.N ) THEN
*
         CALL INFOG1L( IA, DESCA( MB_ ), NPROW, MYROW, DESCA( RSRC_ ),
     $                 II, IAROW )
         DO 10 I = II, MP
            TAU( I ) = ZERO
   10    CONTINUE
*
      ELSE
*
         AII = ZERO
*
         J1 = JA + N - L
         DO 20 I = IA+M-1, IA, -1
            J = JA + I - IA
*
*           Generate elementary reflector H(i) to annihilate
*           [ A(i, j) A(i,j1:ja+n-1) ]
*
            CALL PCLACGV( 1, A, I, J, DESCA, DESCA( M_ ) )
            CALL PCLACGV( L, A, I, J1, DESCA, DESCA( M_ ) )
            CALL PCLARFG( L+1, AII, I, J, A, I, J1, DESCA, DESCA( M_ ),
     $                    TAU )
*
*           Apply H(i) to A(ia:i-1,j:ja+n-1) from the right
*
            CALL PCLARZ( 'Right', I-IA, JA+N-J, L, A, I, J1, DESCA,
     $                   DESCA( M_ ), TAU, A, IA, J, DESCA, WORK )
            CALL PCELSET( A, I, J, DESCA, CONJG( AII ) )
*
   20    CONTINUE
*
         CALL PCLACGV( M, TAU, IA, 1, DESCTAU, 1 )
*
      END IF
*
      RETURN
*
*     End of PCLATRZ
*
      END