1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
|
SUBROUTINE PCLATTRS( UPLO, TRANS, DIAG, NORMIN, N, A, IA, JA,
$ DESCA, X, IX, JX, DESCX, SCALE, CNORM, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* July 31, 2001
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORMIN, TRANS, UPLO
INTEGER IA, INFO, IX, JA, JX, N
REAL SCALE
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCX( * )
REAL CNORM( * )
COMPLEX A( * ), X( * )
* ..
*
* Purpose
* =======
*
* PCLATTRS solves one of the triangular systems
*
* A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
*
* with scaling to prevent overflow. Here A is an upper or lower
* triangular matrix, A**T denotes the transpose of A, A**H denotes the
* conjugate transpose of A, x and b are n-element vectors, and s is a
* scaling factor, usually less than or equal to 1, chosen so that the
* components of x will be less than the overflow threshold. If the
* unscaled problem will not cause overflow, the Level 2 PBLAS routine
* PCTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j)
* then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
*
* This is very slow relative to PCTRSV. This should only be used
* when scaling is necessary to control overflow, or when it is modified
* to scale better.
* Notes
*
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension r x c.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the r processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the c processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (global input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': Solve A * x = s*b (No transpose)
* = 'T': Solve A**T * x = s*b (Transpose)
* = 'C': Solve A**H * x = s*b (Conjugate transpose)
*
* DIAG (global input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* NORMIN (global input) CHARACTER*1
* Specifies whether CNORM has been set or not.
* = 'Y': CNORM contains the column norms on entry
* = 'N': CNORM is not set on entry. On exit, the norms will
* be computed and stored in CNORM.
*
* N (global input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (local input) COMPLEX array, dimension (DESCA(LLD_),*)
* The triangular matrix A. If UPLO = 'U', the leading n by n
* upper triangular part of the array A contains the upper
* triangular matrix, and the strictly lower triangular part of
* A is not referenced. If UPLO = 'L', the leading n by n lower
* triangular part of the array A contains the lower triangular
* matrix, and the strictly upper triangular part of A is not
* referenced. If DIAG = 'U', the diagonal elements of A are
* also not referenced and are assumed to be 1.
*
* IA (global input) pointer to INTEGER
* The global row index of the submatrix of the distributed
* matrix A to operate on.
*
* JA (global input) pointer to INTEGER
* The global column index of the submatrix of the distributed
* matrix A to operate on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* X (local input/output) COMPLEX array,
* dimension (DESCX(LLD_),*)
* On entry, the right hand side b of the triangular system.
* On exit, X is overwritten by the solution vector x.
*
* IX (global input) pointer to INTEGER
* The global row index of the submatrix of the distributed
* matrix X to operate on.
*
* JX (global input) pointer to INTEGER
* The global column index of the submatrix of the distributed
* matrix X to operate on.
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* SCALE (global output) REAL
* The scaling factor s for the triangular system
* A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
* If SCALE = 0, the matrix A is singular or badly scaled, and
* the vector x is an exact or approximate solution to A*x = 0.
*
* CNORM (global input or global output) REAL array,
* dimension (N)
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
* contains the norm of the off-diagonal part of the j-th column
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
* must be greater than or equal to the 1-norm.
*
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
* returns the 1-norm of the offdiagonal part of the j-th column
* of A.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* Further Details
* ======= =======
*
* A rough bound on x is computed; if that is less than overflow, PCTRSV
* is called, otherwise, specific code is used which checks for possible
* overflow or divide-by-zero at every operation.
*
* A columnwise scheme is used for solving A*x = b. The basic algorithm
* if A is lower triangular is
*
* x[1:n] := b[1:n]
* for j = 1, ..., n
* x(j) := x(j) / A(j,j)
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
* end
*
* Define bounds on the components of x after j iterations of the loop:
* M(j) = bound on x[1:j]
* G(j) = bound on x[j+1:n]
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
* Then for iteration j+1 we have
* M(j+1) <= G(j) / | A(j+1,j+1) |
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
* where CNORM(j+1) is greater than or equal to the infinity-norm of
* column j+1 of A, not counting the diagonal. Hence
*
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
* 1<=i<=j
* and
*
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
* 1<=i< j
*
* Since |x(j)| <= M(j), we use the Level 2 PBLAS routine PCTRSV if the
* reciprocal of the largest M(j), j=1,..,n, is larger than
* max(underflow, 1/overflow).
*
* The bound on x(j) is also used to determine when a step in the
* columnwise method can be performed without fear of overflow. If
* the computed bound is greater than a large constant, x is scaled to
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
* Similarly, a row-wise scheme is used to solve A**T *x = b or
* A**H *x = b. The basic algorithm for A upper triangular is
*
* for j = 1, ..., n
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
* end
*
* We simultaneously compute two bounds
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
* M(j) = bound on x(i), 1<=i<=j
*
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
* Then the bound on x(j) is
*
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
* 1<=i<=j
*
* and we can safely call PCTRSV if 1/M(n) and 1/G(n) are both greater
* than max(underflow, 1/overflow).
*
* Last modified by: Mark R. Fahey, August 2000
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, HALF, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
$ TWO = 2.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER CONTXT, CSRC, I, ICOL, ICOLX, IMAX, IROW,
$ IROWX, ITMP1, ITMP1X, ITMP2, ITMP2X, J, JFIRST,
$ JINC, JLAST, LDA, LDX, MB, MYCOL, MYROW, NB,
$ NPCOL, NPROW, RSRC
REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
$ XBND, XJ, CR, CI
REAL XMAX( 1 )
COMPLEX CSUMJ, TJJS, USCAL, XJTMP, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL PSLAMCH
EXTERNAL LSAME, ISAMAX, PSLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, SGSUM2D, SSCAL, INFOG2L,
$ PSCASUM, PSLABAD, PXERBLA, PCAMAX, PCAXPY,
$ PCDOTC, PCDOTU, PCSSCAL, PCLASET, PCSCAL,
$ PCTRSV, CGEBR2D, CGEBS2D, SLADIV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL, CMPLX, CONJG, AIMAG, MAX, MIN
* ..
* .. Statement Functions ..
REAL CABS1, CABS2
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2.E0 ) +
$ ABS( AIMAG( ZDUM ) / 2.E0 )
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
CONTXT = DESCA( CTXT_ )
RSRC = DESCA( RSRC_ )
CSRC = DESCA( CSRC_ )
MB = DESCA( MB_ )
NB = DESCA( NB_ )
LDA = DESCA( LLD_ )
LDX = DESCX( LLD_ )
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
END IF
*
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( CONTXT, 'PCLATTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine machine dependent parameters to control overflow.
*
SMLNUM = PSLAMCH( CONTXT, 'Safe minimum' )
BIGNUM = ONE / SMLNUM
CALL PSLABAD( CONTXT, SMLNUM, BIGNUM )
SMLNUM = SMLNUM / PSLAMCH( CONTXT, 'Precision' )
BIGNUM = ONE / SMLNUM
SCALE = ONE
*
*
IF( LSAME( NORMIN, 'N' ) ) THEN
*
* Compute the 1-norm of each column, not including the diagonal.
*
IF( UPPER ) THEN
*
* A is upper triangular.
*
CNORM( 1 ) = ZERO
DO 10 J = 2, N
CALL PSCASUM( J-1, CNORM( J ), A, IA, JA+J-1, DESCA, 1 )
10 CONTINUE
ELSE
*
* A is lower triangular.
*
DO 20 J = 1, N - 1
CALL PSCASUM( N-J, CNORM( J ), A, IA+J, JA+J-1, DESCA,
$ 1 )
20 CONTINUE
CNORM( N ) = ZERO
END IF
CALL SGSUM2D( CONTXT, 'Row', ' ', N, 1, CNORM, 1, -1, -1 )
END IF
*
* Scale the column norms by TSCAL if the maximum element in CNORM is
* greater than BIGNUM/2.
*
IMAX = ISAMAX( N, CNORM, 1 )
TMAX = CNORM( IMAX )
IF( TMAX.LE.BIGNUM*HALF ) THEN
TSCAL = ONE
ELSE
TSCAL = HALF / ( SMLNUM*TMAX )
CALL SSCAL( N, TSCAL, CNORM, 1 )
END IF
*
* Compute a bound on the computed solution vector to see if the
* Level 2 PBLAS routine PCTRSV can be used.
*
XMAX( 1 ) = ZERO
CALL PCAMAX( N, ZDUM, IMAX, X, IX, JX, DESCX, 1 )
XMAX( 1 ) = CABS2( ZDUM )
CALL SGSUM2D( CONTXT, 'Row', ' ', 1, 1, XMAX, 1, -1, -1 )
XBND = XMAX( 1 )
*
IF( NOTRAN ) THEN
*
* Compute the growth in A * x = b.
*
IF( UPPER ) THEN
JFIRST = N
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = N
JINC = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 50
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, G(0) = max{x(i), i=1,...,n}.
*
GROW = HALF / MAX( XBND, SMLNUM )
XBND = GROW
DO 30 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* TJJS = A( J, J )
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
TJJS = A( ( ICOL-1 )*LDA+IROW )
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
TJJ = CABS1( TJJS )
*
IF( TJJ.GE.SMLNUM ) THEN
*
* M(j) = G(j-1) / abs(A(j,j))
*
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
ELSE
*
* M(j) could overflow, set XBND to 0.
*
XBND = ZERO
END IF
*
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
ELSE
*
* G(j) could overflow, set GROW to 0.
*
GROW = ZERO
END IF
30 CONTINUE
GROW = XBND
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
DO 40 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* G(j) = G(j-1)*( 1 + CNORM(j) )
*
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
40 CONTINUE
END IF
50 CONTINUE
*
ELSE
*
* Compute the growth in A**T * x = b or A**H * x = b.
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = N
JINC = 1
ELSE
JFIRST = N
JLAST = 1
JINC = -1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 80
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, M(0) = max{x(i), i=1,...,n}.
*
GROW = HALF / MAX( XBND, SMLNUM )
XBND = GROW
DO 60 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
XJ = ONE + CNORM( J )
GROW = MIN( GROW, XBND / XJ )
*
* TJJS = A( J, J )
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
TJJS = A( ( ICOL-1 )*LDA+IROW )
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
TJJ = CABS1( TJJS )
*
IF( TJJ.GE.SMLNUM ) THEN
*
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
IF( XJ.GT.TJJ )
$ XBND = XBND*( TJJ / XJ )
ELSE
*
* M(j) could overflow, set XBND to 0.
*
XBND = ZERO
END IF
60 CONTINUE
GROW = MIN( GROW, XBND )
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
DO 70 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = ( 1 + CNORM(j) )*G(j-1)
*
XJ = ONE + CNORM( J )
GROW = GROW / XJ
70 CONTINUE
END IF
80 CONTINUE
END IF
*
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
* Use the Level 2 PBLAS solve if the reciprocal of the bound on
* elements of X is not too small.
*
CALL PCTRSV( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX,
$ DESCX, 1 )
ELSE
*
* Use a Level 1 PBLAS solve, scaling intermediate results.
*
IF( XMAX( 1 ).GT.BIGNUM*HALF ) THEN
*
* Scale X so that its components are less than or equal to
* BIGNUM in absolute value.
*
SCALE = ( BIGNUM*HALF ) / XMAX( 1 )
CALL PCSSCAL( N, SCALE, X, IX, JX, DESCX, 1 )
XMAX( 1 ) = BIGNUM
ELSE
XMAX( 1 ) = XMAX( 1 )*TWO
END IF
*
IF( NOTRAN ) THEN
*
* Solve A * x = b
*
DO 100 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
* XJ = CABS1( X( J ) )
CALL INFOG2L( IX+J-1, JX, DESCX, NPROW, NPCOL, MYROW,
$ MYCOL, IROWX, ICOLX, ITMP1X, ITMP2X )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) ) THEN
XJTMP = X( IROWX )
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, XJTMP, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, XJTMP, 1,
$ ITMP1X, ITMP2X )
END IF
XJ = CABS1( XJTMP )
IF( NOUNIT ) THEN
* TJJS = A( J, J )*TSCAL
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
TJJS = A( ( ICOL-1 )*LDA+IROW )*TSCAL
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 90
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by 1/b(j).
*
REC = ONE / XJ
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
END IF
* X( J ) = CLADIV( X( J ), TJJS )
* XJ = CABS1( X( J ) )
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
XJ = CABS1( XJTMP )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = XJTMP
END IF
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
* to avoid overflow when dividing by A(j,j).
*
REC = ( TJJ*BIGNUM ) / XJ
IF( CNORM( J ).GT.ONE ) THEN
*
* Scale by 1/CNORM(j) to avoid overflow when
* multiplying x(j) times column j.
*
REC = REC / CNORM( J )
END IF
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
* X( J ) = CLADIV( X( J ), TJJS )
* XJ = CABS1( X( J ) )
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
XJ = CABS1( XJTMP )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = XJTMP
END IF
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A*x = 0.
*
CALL PCLASET( ' ', N, 1, CZERO, CZERO, X, IX, JX,
$ DESCX )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = CONE
END IF
XJTMP = CONE
XJ = ONE
SCALE = ZERO
XMAX( 1 ) = ZERO
END IF
90 CONTINUE
*
* Scale x if necessary to avoid overflow when adding a
* multiple of column j of A.
*
IF( XJ.GT.ONE ) THEN
REC = ONE / XJ
IF( CNORM( J ).GT.( BIGNUM-XMAX( 1 ) )*REC ) THEN
*
* Scale x by 1/(2*abs(x(j))).
*
REC = REC*HALF
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
END IF
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX( 1 ) ) ) THEN
*
* Scale x by 1/2.
*
CALL PCSSCAL( N, HALF, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*HALF
SCALE = SCALE*HALF
END IF
*
IF( UPPER ) THEN
IF( J.GT.1 ) THEN
*
* Compute the update
* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
*
ZDUM = -XJTMP*TSCAL
CALL PCAXPY( J-1, ZDUM, A, IA, JA+J-1, DESCA, 1, X,
$ IX, JX, DESCX, 1 )
CALL PCAMAX( J-1, ZDUM, IMAX, X, IX, JX, DESCX, 1 )
XMAX( 1 ) = CABS1( ZDUM )
CALL SGSUM2D( CONTXT, 'Row', ' ', 1, 1, XMAX, 1,
$ -1, -1 )
END IF
ELSE
IF( J.LT.N ) THEN
*
* Compute the update
* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
*
ZDUM = -XJTMP*TSCAL
CALL PCAXPY( N-J, ZDUM, A, IA+J, JA+J-1, DESCA, 1,
$ X, IX+J, JX, DESCX, 1 )
CALL PCAMAX( N-J, ZDUM, I, X, IX+J, JX, DESCX, 1 )
XMAX( 1 ) = CABS1( ZDUM )
CALL SGSUM2D( CONTXT, 'Row', ' ', 1, 1, XMAX, 1,
$ -1, -1 )
END IF
END IF
100 CONTINUE
*
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
* Solve A**T * x = b
*
DO 120 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
* XJ = CABS1( X( J ) )
CALL INFOG2L( IX+J-1, JX, DESCX, NPROW, NPCOL, MYROW,
$ MYCOL, IROWX, ICOLX, ITMP1X, ITMP2X )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) ) THEN
XJTMP = X( IROWX )
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, XJTMP, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, XJTMP, 1,
$ ITMP1X, ITMP2X )
END IF
XJ = CABS1( XJTMP )
USCAL = CMPLX( TSCAL )
REC = ONE / MAX( XMAX( 1 ), ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
* TJJS = A( J, J )*TSCAL
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW, ICOL, ITMP1,
$ ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) )
$ THEN
TJJS = A( ( ICOL-1 )*LDA+IROW )*TSCAL
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS,
$ 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
ELSE
TJJS = TSCAL
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
CALL SLADIV( REAL( USCAL ), AIMAG( USCAL ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
USCAL = CMPLX( CR, CI )
END IF
IF( REC.LT.ONE ) THEN
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
END IF
*
CSUMJ = CZERO
IF( USCAL.EQ.CONE ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call PCDOTU to perform the dot product.
*
IF( UPPER ) THEN
CALL PCDOTU( J-1, CSUMJ, A, IA, JA+J-1, DESCA, 1,
$ X, IX, JX, DESCX, 1 )
ELSE IF( J.LT.N ) THEN
CALL PCDOTU( N-J, CSUMJ, A, IA+J, JA+J-1, DESCA, 1,
$ X, IX+J, JX, DESCX, 1 )
END IF
IF( MYCOL.EQ.ITMP2X ) THEN
CALL CGEBS2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1,
$ MYROW, ITMP2X )
END IF
ELSE
*
* Otherwise, scale column of A by USCAL before dot
* product. Below is not the best way to do it.
*
IF( UPPER ) THEN
* DO 130 I = 1, J - 1
* CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
* 130 CONTINUE
ZDUM = CONJG( USCAL )
CALL PCSCAL( J-1, ZDUM, A, IA, JA+J-1, DESCA, 1 )
CALL PCDOTU( J-1, CSUMJ, A, IA, JA+J-1, DESCA, 1,
$ X, IX, JX, DESCX, 1 )
CALL SLADIV( REAL( ZDUM ), AIMAG( ZDUM ),
$ REAL( USCAL ), AIMAG( USCAL ), CR, CI)
ZDUM = CMPLX( CR, CI )
CALL PCSCAL( J-1, ZDUM, A, IA, JA+J-1, DESCA, 1 )
ELSE IF( J.LT.N ) THEN
* DO 140 I = J + 1, N
* CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
* 140 CONTINUE
ZDUM = CONJG( USCAL )
CALL PCSCAL( N-J, ZDUM, A, IA+J, JA+J-1, DESCA, 1 )
CALL PCDOTU( N-J, CSUMJ, A, IA+J, JA+J-1, DESCA, 1,
$ X, IX+J, JX, DESCX, 1 )
CALL SLADIV( REAL( ZDUM ), AIMAG( ZDUM ),
$ REAL( USCAL ), AIMAG( USCAL ), CR, CI)
ZDUM = CMPLX( CR, CI )
CALL PCSCAL( N-J, ZDUM, A, IA+J, JA+J-1, DESCA, 1 )
END IF
IF( MYCOL.EQ.ITMP2X ) THEN
CALL CGEBS2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1,
$ MYROW, ITMP2X )
END IF
END IF
*
IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
*
* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
* X( J ) = X( J ) - CSUMJ
* XJ = CABS1( X( J ) )
XJTMP = XJTMP - CSUMJ
XJ = CABS1( XJTMP )
* IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
* $ X( IROWX ) = XJTMP
IF( NOUNIT ) THEN
* TJJS = A( J, J )*TSCAL
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW, ICOL, ITMP1,
$ ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) )
$ THEN
TJJS = A( ( ICOL-1 )*LDA+IROW )*TSCAL
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS,
$ 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 110
END IF
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
END IF
* X( J ) = CLADIV( X( J ), TJJS )
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = XJTMP
END IF
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
* X( J ) = CLADIV( X( J ), TJJS )
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = XJTMP
END IF
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0 and compute a solution to A**T *x = 0.
*
CALL PCLASET( ' ', N, 1, CZERO, CZERO, X, IX, JX,
$ DESCX )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = CONE
END IF
XJTMP = CONE
SCALE = ZERO
XMAX( 1 ) = ZERO
END IF
110 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
* product has already been divided by 1/A(j,j).
*
* X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ THEN
X( IROWX ) = XJTMP
END IF
END IF
XMAX( 1 ) = MAX( XMAX( 1 ), CABS1( XJTMP ) )
120 CONTINUE
*
ELSE
*
* Solve A**H * x = b
*
DO 140 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
CALL INFOG2L( IX+J-1, JX, DESCX, NPROW, NPCOL, MYROW,
$ MYCOL, IROWX, ICOLX, ITMP1X, ITMP2X )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) ) THEN
XJTMP = X( IROWX )
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, XJTMP, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, XJTMP, 1,
$ ITMP1X, ITMP2X )
END IF
XJ = CABS1( XJTMP )
USCAL = TSCAL
REC = ONE / MAX( XMAX( 1 ), ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
* TJJS = CONJG( A( J, J ) )*TSCAL
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW, ICOL, ITMP1,
$ ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) )
$ THEN
TJJS = CONJG( A( ( ICOL-1 )*LDA+IROW ) )*TSCAL
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS,
$ 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
ELSE
TJJS = TSCAL
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
CALL SLADIV( REAL( USCAL ), AIMAG( USCAL ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
USCAL = CMPLX( CR, CI )
END IF
IF( REC.LT.ONE ) THEN
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
END IF
*
CSUMJ = CZERO
IF( USCAL.EQ.CONE ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call PCDOTC to perform the dot product.
*
IF( UPPER ) THEN
CALL PCDOTC( J-1, CSUMJ, A, IA, JA+J-1, DESCA, 1,
$ X, IX, JX, DESCX, 1 )
ELSE IF( J.LT.N ) THEN
CALL PCDOTC( N-J, CSUMJ, A, IA+J, JA+J-1, DESCA, 1,
$ X, IX+J, JX, DESCX, 1 )
END IF
IF( MYCOL.EQ.ITMP2X ) THEN
CALL CGEBS2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1,
$ MYROW, ITMP2X )
END IF
ELSE
*
* Otherwise, scale column of A by USCAL before dot
* product. Below is not the best way to do it.
*
IF( UPPER ) THEN
* DO 180 I = 1, J - 1
* CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
* $ X( I )
* 180 CONTINUE
ZDUM = CONJG( USCAL )
CALL PCSCAL( J-1, ZDUM, A, IA, JA+J-1, DESCA, 1 )
CALL PCDOTC( J-1, CSUMJ, A, IA, JA+J-1, DESCA, 1,
$ X, IX, JX, DESCX, 1 )
CALL SLADIV( ONE, ZERO,
$ REAL( ZDUM ), AIMAG( ZDUM ), CR, CI )
ZDUM = CMPLX( CR, CI )
CALL PCSCAL( J-1, ZDUM, A, IA, JA+J-1, DESCA, 1 )
ELSE IF( J.LT.N ) THEN
* DO 190 I = J + 1, N
* CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
* $ X( I )
* 190 CONTINUE
ZDUM = CONJG( USCAL )
CALL PCSCAL( N-J, ZDUM, A, IA+J, JA+J-1, DESCA, 1 )
CALL PCDOTC( N-J, CSUMJ, A, IA+J, JA+J-1, DESCA, 1,
$ X, IX+J, JX, DESCX, 1 )
CALL SLADIV( ONE, ZERO,
$ REAL( ZDUM ), AIMAG( ZDUM ), CR, CI )
ZDUM = CMPLX( CR, CI )
CALL PCSCAL( N-J, ZDUM, A, IA+J, JA+J-1, DESCA, 1 )
END IF
IF( MYCOL.EQ.ITMP2X ) THEN
CALL CGEBS2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1 )
ELSE
CALL CGEBR2D( CONTXT, 'Row', ' ', 1, 1, CSUMJ, 1,
$ MYROW, ITMP2X )
END IF
END IF
*
IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
*
* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
* X( J ) = X( J ) - CSUMJ
* XJ = CABS1( X( J ) )
XJTMP = XJTMP - CSUMJ
XJ = CABS1( XJTMP )
* IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
* $ X( IROWX ) = XJTMP
IF( NOUNIT ) THEN
* TJJS = CONJG( A( J, J ) )*TSCAL
CALL INFOG2L( IA+J-1, JA+J-1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW, ICOL, ITMP1,
$ ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) )
$ THEN
TJJS = CONJG( A( ( ICOL-1 )*LDA+IROW ) )*TSCAL
CALL CGEBS2D( CONTXT, 'All', ' ', 1, 1, TJJS,
$ 1 )
ELSE
CALL CGEBR2D( CONTXT, 'All', ' ', 1, 1, TJJS, 1,
$ ITMP1, ITMP2 )
END IF
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 130
END IF
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
END IF
* X( J ) = CLADIV( X( J ), TJJS )
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ X( IROWX ) = XJTMP
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL PCSSCAL( N, REC, X, IX, JX, DESCX, 1 )
XJTMP = XJTMP*REC
SCALE = SCALE*REC
XMAX( 1 ) = XMAX( 1 )*REC
END IF
* X( J ) = CLADIV( X( J ), TJJS )
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ X( IROWX ) = XJTMP
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0 and compute a solution to A**H *x = 0.
*
CALL PCLASET( ' ', N, 1, CZERO, CZERO, X, IX, JX,
$ DESCX )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ X( IROWX ) = CONE
XJTMP = CONE
SCALE = ZERO
XMAX( 1 ) = ZERO
END IF
130 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
* product has already been divided by 1/A(j,j).
*
* X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
CALL SLADIV( REAL( XJTMP ), AIMAG( XJTMP ),
$ REAL( TJJS ), AIMAG( TJJS ), CR, CI )
XJTMP = CMPLX( CR, CI )
IF( ( MYROW.EQ.ITMP1X ) .AND. ( MYCOL.EQ.ITMP2X ) )
$ X( IROWX ) = XJTMP
END IF
XMAX( 1 ) = MAX( XMAX( 1 ), CABS1( XJTMP ) )
140 CONTINUE
END IF
SCALE = SCALE / TSCAL
END IF
*
* Scale the column norms by 1/TSCAL for return.
*
IF( TSCAL.NE.ONE ) THEN
CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
END IF
*
RETURN
*
* End of PCLATTRS
*
END
|