File: pclawil.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (272 lines) | stat: -rw-r--r-- 10,487 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      SUBROUTINE PCLAWIL( II, JJ, M, A, DESCA, H44, H33, H43H34, V )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     July 31, 2001
*
*     .. Scalar Arguments ..
      INTEGER            II, JJ, M
      COMPLEX            H33, H43H34, H44
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      COMPLEX            A( * ), V( * )
*     ..
*
*  Purpose
*  =======
*
*  PCLAWIL gets the transform given by H44,H33, & H43H34 into V
*     starting at row M.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  II      (global input) INTEGER
*          Row owner of H(M+2,M+2)
*
*  JJ      (global input) INTEGER
*          Column owner of H(M+2,M+2)
*
*  M       (global input) INTEGER
*          On entry, this is where the transform starts (row M.)
*          Unchanged on exit.
*
*  A       (global input) COMPLEX array, dimension
*          (DESCA(LLD_),*)
*          On entry, the Hessenberg matrix.
*          Unchanged on exit.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*          Unchanged on exit.
*
*  H44
*  H33
*  H43H34  (global input) COMPLEX
*          These three values are for the double shift QR iteration.
*          Unchanged on exit.
*
*  V       (global output) COMPLEX array of size 3.
*          Contains the transform on ouput.
*
*  Further Details
*  ===============
*
*  Implemented by:  M. Fahey, May 28, 1999
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            CONTXT, DOWN, HBL, ICOL, IROW, JSRC, LDA, LEFT,
     $                   MODKM1, MYCOL, MYROW, NPCOL, NPROW, NUM, RIGHT,
     $                   RSRC, UP
      REAL               S
      COMPLEX            CDUM, H22, H33S, H44S, V1, V2
*     ..
*     .. Local Arrays ..
      COMPLEX            BUF( 4 ), V3( 1 ), H11( 1 ), H12( 1 ), H21( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, INFOG2L, CGERV2D, CGESD2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, AIMAG, MOD
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
      HBL = DESCA( MB_ )
      CONTXT = DESCA( CTXT_ )
      LDA = DESCA( LLD_ )
      CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
      LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
      RIGHT = MOD( MYCOL+1, NPCOL )
      UP = MOD( MYROW+NPROW-1, NPROW )
      DOWN = MOD( MYROW+1, NPROW )
      NUM = NPROW*NPCOL
*
*     On node (II,JJ) collect all DIA,SUP,SUB info from M, M+1
*
      MODKM1 = MOD( M+1, HBL )
      IF( MODKM1.EQ.0 ) THEN
         IF( ( MYROW.EQ.II ) .AND. ( RIGHT.EQ.JJ ) .AND.
     $       ( NPCOL.GT.1 ) ) THEN
            CALL INFOG2L( M+2, M+1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                    IROW, ICOL, RSRC, JSRC )
            BUF( 1 ) = A( ( ICOL-1 )*LDA+IROW )
            CALL CGESD2D( CONTXT, 1, 1, BUF, 1, II, JJ )
         END IF
         IF( ( DOWN.EQ.II ) .AND. ( RIGHT.EQ.JJ ) .AND. ( NUM.GT.1 ) )
     $        THEN
            CALL INFOG2L( M, M, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW,
     $                    ICOL, RSRC, JSRC )
            BUF( 1 ) = A( ( ICOL-1 )*LDA+IROW )
            BUF( 2 ) = A( ( ICOL-1 )*LDA+IROW+1 )
            BUF( 3 ) = A( ICOL*LDA+IROW )
            BUF( 4 ) = A( ICOL*LDA+IROW+1 )
            CALL CGESD2D( CONTXT, 4, 1, BUF, 4, II, JJ )
         END IF
         IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
            CALL INFOG2L( M+2, M+2, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                    IROW, ICOL, RSRC, JSRC )
            IF( NPCOL.GT.1 ) THEN
               CALL CGERV2D( CONTXT, 1, 1, V3, 1, MYROW, LEFT )
            ELSE
               V3( 1 ) = A( ( ICOL-2 )*LDA+IROW )
            END IF
            IF( NUM.GT.1 ) THEN
               CALL CGERV2D( CONTXT, 4, 1, BUF, 4, UP, LEFT )
               H11( 1 ) = BUF( 1 )
               H21( 1 ) = BUF( 2 )
               H12( 1 ) = BUF( 3 )
               H22 = BUF( 4 )
            ELSE
               H11( 1 ) = A( ( ICOL-3 )*LDA+IROW-2 )
               H21( 1 ) = A( ( ICOL-3 )*LDA+IROW-1 )
               H12( 1 ) = A( ( ICOL-2 )*LDA+IROW-2 )
               H22 = A( ( ICOL-2 )*LDA+IROW-1 )
            END IF
         END IF
      END IF
      IF( MODKM1.EQ.1 ) THEN
         IF( ( DOWN.EQ.II ) .AND. ( RIGHT.EQ.JJ ) .AND. ( NUM.GT.1 ) )
     $        THEN
            CALL INFOG2L( M, M, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW,
     $                    ICOL, RSRC, JSRC )
            CALL CGESD2D( CONTXT, 1, 1, A( ( ICOL-1 )*LDA+IROW ), 1, II,
     $                    JJ )
         END IF
         IF( ( DOWN.EQ.II ) .AND. ( MYCOL.EQ.JJ ) .AND. ( NPROW.GT.1 ) )
     $        THEN
            CALL INFOG2L( M, M+1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                    IROW, ICOL, RSRC, JSRC )
            CALL CGESD2D( CONTXT, 1, 1, A( ( ICOL-1 )*LDA+IROW ), 1, II,
     $                    JJ )
         END IF
         IF( ( MYROW.EQ.II ) .AND. ( RIGHT.EQ.JJ ) .AND.
     $       ( NPCOL.GT.1 ) ) THEN
            CALL INFOG2L( M+1, M, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                    IROW, ICOL, RSRC, JSRC )
            CALL CGESD2D( CONTXT, 1, 1, A( ( ICOL-1 )*LDA+IROW ), 1, II,
     $                    JJ )
         END IF
         IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
            CALL INFOG2L( M+2, M+2, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                    IROW, ICOL, RSRC, JSRC )
            IF( NUM.GT.1 ) THEN
               CALL CGERV2D( CONTXT, 1, 1, H11( 1 ), 1, UP, LEFT )
            ELSE
               H11( 1 ) = A( ( ICOL-3 )*LDA+IROW-2 )
            END IF
            IF( NPROW.GT.1 ) THEN
               CALL CGERV2D( CONTXT, 1, 1, H12, 1, UP, MYCOL )
            ELSE
               H12( 1 ) = A( ( ICOL-2 )*LDA+IROW-2 )
            END IF
            IF( NPCOL.GT.1 ) THEN
               CALL CGERV2D( CONTXT, 1, 1, H21( 1 ), 1, MYROW, LEFT )
            ELSE
               H21( 1 ) = A( ( ICOL-3 )*LDA+IROW-1 )
            END IF
            H22 = A( ( ICOL-2 )*LDA+IROW-1 )
            V3( 1 ) = A( ( ICOL-2 )*LDA+IROW )
         END IF
      END IF
      IF( ( MYROW.NE.II ) .OR. ( MYCOL.NE.JJ ) )
     $   RETURN
*
      IF( MODKM1.GT.1 ) THEN
         CALL INFOG2L( M+2, M+2, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                 IROW, ICOL, RSRC, JSRC )
         H11( 1 ) = A( ( ICOL-3 )*LDA+IROW-2 )
         H21( 1 ) = A( ( ICOL-3 )*LDA+IROW-1 )
         H12( 1 ) = A( ( ICOL-2 )*LDA+IROW-2 )
         H22 = A( ( ICOL-2 )*LDA+IROW-1 )
         V3( 1 ) = A( ( ICOL-2 )*LDA+IROW )
      END IF
*
      H44S = H44 - H11( 1 )
      H33S = H33 - H11( 1 )
      V1 = ( H33S*H44S-H43H34 ) / H21( 1 ) + H12( 1 )
      V2 = H22 - H11( 1 ) - H33S - H44S
      S = CABS1( V1 ) + CABS1( V2 ) + CABS1( V3( 1 ) )
      V1 = V1 / S
      V2 = V2 / S
      V3( 1 ) = V3( 1 ) / S
      V( 1 ) = V1
      V( 2 ) = V2
      V( 3 ) = V3( 1 )
*
      RETURN
*
*     End of PCLAWIL
*
      END