File: pctrcon.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (431 lines) | stat: -rw-r--r-- 16,648 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
      SUBROUTINE PCTRCON( NORM, UPLO, DIAG, N, A, IA, JA, DESCA, RCOND,
     $                    WORK, LWORK, RWORK, LRWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 25, 2001
*
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORM, UPLO
      INTEGER            IA, JA, INFO, LRWORK, LWORK, N
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCTRCON estimates the reciprocal of the condition number of a
*  triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1), in either the
*  1-norm or the infinity-norm.
*
*  The norm of A(IA:IA+N-1,JA:JA+N-1) is computed and an estimate is
*  obtained for norm(inv(A(IA:IA+N-1,JA:JA+N-1))), then the reciprocal
*  of the condition number is computed as
*             RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1)      ) *
*                           norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  NORM    (global input) CHARACTER
*          Specifies whether the 1-norm condition number or the
*          infinity-norm condition number is required:
*          = '1' or 'O':  1-norm;
*          = 'I':         Infinity-norm.
*
*  UPLO    (global input) CHARACTER
*          = 'U':  A(IA:IA+N-1,JA:JA+N-1) is upper triangular;
*          = 'L':  A(IA:IA+N-1,JA:JA+N-1) is lower triangular.
*
*  DIAG    (global input) CHARACTER
*          = 'N':  A(IA:IA+N-1,JA:JA+N-1) is non-unit triangular;
*          = 'U':  A(IA:IA+N-1,JA:JA+N-1) is unit triangular.
*
*  N       (global input) INTEGER
*          The order of the distributed matrix A(IA:IA+N-1,JA:JA+N-1).
*          N >= 0.
*
*  A       (local input) COMPLEX pointer into the local memory
*          to an array of dimension ( LLD_A, LOCc(JA+N-1) ). This array
*          contains the local pieces of the triangular distributed
*          matrix A(IA:IA+N-1,JA:JA+N-1). If UPLO = 'U', the leading
*          N-by-N upper triangular part of this distributed matrix con-
*          tains the upper triangular matrix, and its strictly lower
*          triangular part is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of this ditributed
*          matrix contains the lower triangular matrix, and the strictly
*          upper triangular part is not referenced. If DIAG = 'U', the
*          diagonal elements of A(IA:IA+N-1,JA:JA+N-1) are also not
*          referenced and are assumed to be 1.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  RCOND   (global output) REAL
*          The reciprocal of the condition number of the distributed
*          matrix A(IA:IA+N-1,JA:JA+N-1), computed as
*             RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1)      ) *
*                           norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).
*
*  WORK    (local workspace/local output) COMPLEX array,
*                                                   dimension (LWORK)
*          On exit, WORK(1) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK >= 2*LOCr(N+MOD(IA-1,MB_A)) +
*          MAX( 2, MAX(NB_A*CEIL(P-1,Q),LOCc(N+MOD(JA-1,NB_A)) +
*          NB_A*CEIL(Q-1,P)) ).
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  RWORK   (local workspace/local output) REAL array,
*                                                  dimension (LRWORK)
*          On exit, RWORK(1) returns the minimal and optimal LRWORK.
*
*  LRWORK  (local or global input) INTEGER
*          The dimension of the array RWORK.
*          LRWORK is local input and must be at least
*          LRWORK >= LOCc(N+MOD(JA-1,NB_A)).
*
*          If LRWORK = -1, then LRWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, NOUNIT, ONENRM, UPPER
      CHARACTER          CBTOP, COLCTOP, NORMIN, ROWCTOP
      INTEGER            IACOL, IAROW, ICOFF, ICTXT, IIA, IPN, IPV, IPW,
     $                   IPX, IROFF, IV, IX, IXX, JJA, JV, JX, KASE,
     $                   KASE1, LRWMIN, LWMIN, MYCOL, MYROW, NP, NPCOL,
     $                   NPMOD, NPROW, NQMOD
      REAL               AINVNM, ANORM, SCALE, SMLNUM
      COMPLEX            WMAX, ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            DESCV( DLEN_ ), DESCX( DLEN_ ), IDUM1( 5 ),
     $                   IDUM2( 5 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CGEBR2D, CGEBS2D, CHK1MAT,
     $                   DESCSET, INFOG2L, PCAMAX, PCHK1MAT, PCLATRS,
     $                   PCLACON, PCSRSCL, PB_TOPGET, PB_TOPSET,
     $                   PXERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, INDXG2P, NUMROC
      REAL               PCLANTR, PSLAMCH
      EXTERNAL           ICEIL, INDXG2P, LSAME, NUMROC, PCLANTR,
     $                   PSLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, ICHAR, MAX, MOD, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 800 + CTXT_ )
      ELSE
         CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, INFO )
         IF( INFO.EQ.0 ) THEN
            UPPER = LSAME( UPLO, 'U' )
            ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
            NOUNIT = LSAME( DIAG, 'N' )
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $                       NPCOL )
            NPMOD = NUMROC( N + MOD( IA-1, DESCA( MB_ ) ), DESCA( MB_ ),
     $                      MYROW, IAROW, NPROW )
            NQMOD = NUMROC( N + MOD( JA-1, DESCA( NB_ ) ), DESCA( NB_ ),
     $                      MYCOL, IACOL, NPCOL )
            LWMIN = 2*NPMOD +
     $              MAX( 2, MAX( DESCA( NB_ )*
     $                   MAX( 1, ICEIL( NPROW-1, NPCOL ) ), NQMOD +
     $                   DESCA( NB_ )*
     $                   MAX( 1, ICEIL( NPCOL-1, NPROW ) ) ) )
            WORK( 1 ) = REAL( LWMIN )
            LRWMIN = NQMOD
            RWORK( 1 ) = REAL( LRWMIN )
            LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
*
            IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
               INFO = -1
            ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -2
            ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
               INFO = -3
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -11
            ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -13
            END IF
         END IF
*
         IF( ONENRM ) THEN
            IDUM1( 1 ) = ICHAR( '1' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'I' )
         END IF
         IDUM2( 1 ) = 1
         IF( UPPER ) THEN
            IDUM1( 2 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 2 ) = ICHAR( 'L' )
         END IF
         IDUM2( 2 ) = 2
         IF( NOUNIT ) THEN
            IDUM1( 3 ) = ICHAR( 'N' )
         ELSE
            IDUM1( 3 ) = ICHAR( 'U' )
         END IF
         IDUM2( 3 ) = 3
         IF( LWORK.EQ.-1 ) THEN
            IDUM1( 4 ) = -1
         ELSE
            IDUM1( 4 ) = 1
         END IF
         IDUM2( 4 ) = 11
         IF( LRWORK.EQ.-1 ) THEN
            IDUM1( 5 ) = -1
         ELSE
            IDUM1( 5 ) = 1
         END IF
         IDUM2( 5 ) = 13
         CALL PCHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, 5, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCTRCON', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      END IF
*
      CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
      CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise',    ROWCTOP )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', '1-tree' )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise',    '1-tree' )
*
      RCOND = ZERO
      SMLNUM = PSLAMCH( ICTXT, 'Safe minimum' )*REAL( MAX( 1, N ) )
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      IV = IROFF + 1
      IX = IV
      JV = ICOFF + 1
      JX = JV
*
      IPX = 1
      IPV = IPX + NP
      IPW = IPV + NP
      IPN = 1
*
      CALL DESCSET( DESCV, N+IROFF, 1, DESCA( MB_ ), 1, IAROW, MYCOL,
     $              ICTXT, MAX( 1, NP ) )
      CALL DESCSET( DESCX, N+IROFF, 1, DESCA( MB_ ), 1, IAROW, MYCOL,
     $              ICTXT, MAX( 1, NP ) )
*
*     Compute the norm of the triangular matrix A.
*
      ANORM = PCLANTR( NORM, UPLO, DIAG, N, N, A, IA, JA, DESCA, RWORK )
*
*     Continue only if ANORM > 0.
*
      IF( ANORM.GT.ZERO ) THEN
*
*        Estimate the norm of the inverse of A.
*
         AINVNM = ZERO
         NORMIN = 'N'
         IF( ONENRM ) THEN
            KASE1 = 1
         ELSE
            KASE1 = 2
         END IF
         KASE = 0
   10    CONTINUE
         CALL PCLACON( N, WORK( IPV ), IV, JV, DESCV, WORK( IPX ),
     $                 IX, JX, DESCX, AINVNM, KASE )
         IF( KASE.NE.0 ) THEN
            IF( KASE.EQ.KASE1 ) THEN
*
*              Multiply by inv(A).
*
               DESCX( CSRC_ ) = IACOL
               CALL PCLATRS( UPLO, 'No transpose', DIAG, NORMIN,
     $                       N, A, IA, JA, DESCA, WORK( IPX ), IX, JX,
     $                       DESCX, SCALE, RWORK( IPN ), WORK( IPW ) )
               DESCX( CSRC_ ) = MYCOL
            ELSE
*
*              Multiply by inv(A').
*
               DESCX( CSRC_ ) = IACOL
               CALL PCLATRS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
     $                       N, A, IA, JA, DESCA, WORK( IPX ), IX, JX,
     $                       DESCX, SCALE, RWORK( IPN ), WORK( IPW ) )
               DESCX( CSRC_ ) = MYCOL
            END IF
            NORMIN = 'Y'
*
*           Multiply by 1/SCALE if doing so will not cause overflow.
*
            IF( SCALE.NE.ONE ) THEN
               CALL PCAMAX( N, WMAX, IXX, WORK( IPX ), IX, JX,
     $                   DESCX, 1 )
               IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
                  CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise',
     $                          CBTOP )
                  IF( MYROW.EQ.IAROW ) THEN
                     CALL CGEBS2D( ICTXT, 'Column', CBTOP, 1, 1, WMAX,
     $                             1 )
                  ELSE
                     CALL CGEBR2D( ICTXT, 'Column', CBTOP, 1, 1, WMAX,
     $                             1, IAROW, MYCOL )
                  END IF
               END IF
               IF( SCALE.LT.CABS1( WMAX )*SMLNUM .OR. SCALE.EQ.ZERO )
     $            GO TO 20
               CALL PCSRSCL( N, SCALE, WORK( IPX ), IX, JX, DESCX, 1 )
            END IF
            GO TO 10
         END IF
*
*        Compute the estimate of the reciprocal condition number.
*
         IF( AINVNM.NE.ZERO )
     $      RCOND = ( ONE / ANORM ) / AINVNM
      END IF
*
   20 CONTINUE
*
      CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise',    ROWCTOP )
*
      RETURN
*
*     End of PCTRCON
*
      END