File: pcunmql.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (458 lines) | stat: -rw-r--r-- 17,580 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
      SUBROUTINE PCUNMQL( SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU,
     $                    C, IC, JC, DESCC, WORK, LWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 25, 2001
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            IA, IC, INFO, JA, JC, K, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCC( * )
      COMPLEX            A( * ), C( * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCUNMQL overwrites the general complex M-by-N distributed matrix
*  sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
*
*                      SIDE = 'L'           SIDE = 'R'
*  TRANS = 'N':      Q * sub( C )         sub( C ) * Q
*  TRANS = 'C':      Q**H * sub( C )      sub( C ) * Q**H
*
*  where Q is a complex unitary distributed matrix defined as the
*  product of K elementary reflectors
*
*        Q = H(k) . . . H(2) H(1)
*
*  as returned by PCGEQLF. Q is of order M if SIDE = 'L' and of order N
*  if SIDE = 'R'.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  SIDE    (global input) CHARACTER
*          = 'L': apply Q or Q**H from the Left;
*          = 'R': apply Q or Q**H from the Right.
*
*  TRANS   (global input) CHARACTER
*          = 'N':  No transpose, apply Q;
*          = 'C':  Conjugate transpose, apply Q**H.
*
*  M       (global input) INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( C ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( C ). N >= 0.
*
*  K       (global input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q.  If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
*          N >= K >= 0.
*
*  A       (local input) COMPLEX pointer into the local memory
*          to an array of dimension (LLD_A,LOCc(JA+K-1)). On entry, the
*          j-th column must contain the vector which defines the elemen-
*          tary reflector H(j), JA <= j <= JA+K-1, as returned by
*          PCGEQLF in the K columns of its distributed matrix
*          argument A(IA:*,JA:JA+K-1). A(IA:*,JA:JA+K-1) is modified by
*          the routine but restored on exit.
*          If SIDE = 'L', LLD_A >= MAX( 1, LOCr(IA+M-1) ),
*          if SIDE = 'R', LLD_A >= MAX( 1, LOCr(IA+N-1) ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  TAU     (local input) COMPLEX, array, dimension LOCc(JA+N-1)
*          This array contains the scalar factors TAU(j) of the
*          elementary reflectors H(j) as returned by PCGEQLF.
*          TAU is tied to the distributed matrix A.
*
*  C       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
*          On entry, the local pieces of the distributed matrix sub(C).
*          On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
*          or sub( C )*Q' or sub( C )*Q.
*
*  IC      (global input) INTEGER
*          The row index in the global array C indicating the first
*          row of sub( C ).
*
*  JC      (global input) INTEGER
*          The column index in the global array C indicating the
*          first column of sub( C ).
*
*  DESCC   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix C.
*
*  WORK    (local workspace/local output) COMPLEX array,
*                                                    dimension (LWORK)
*          On exit, WORK(1) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          If SIDE = 'L',
*            LWORK >= MAX( (NB_A*(NB_A-1))/2, (NqC0 + MpC0)*NB_A ) +
*                     NB_A * NB_A
*          else if SIDE = 'R',
*            LWORK >= MAX( (NB_A*(NB_A-1))/2, ( NqC0 + MAX( NpA0 +
*                     NUMROC( NUMROC( N+ICOFFC, NB_A, 0, 0, NPCOL ),
*                             NB_A, 0, 0, LCMQ ), MpC0 ) )*NB_A ) +
*                     NB_A * NB_A
*          end if
*
*          where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          NpA0 = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*
*          IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
*          ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
*          ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
*          MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
*          NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
*
*          ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
*  must verify some alignment properties, namely the following
*  expressions should be true:
*
*  If SIDE = 'L',
*    ( MB_A.EQ.MB_C .AND. IROFFA.EQ.IROFFC .AND. IAROW.EQ.ICROW )
*  If SIDE = 'R',
*    ( MB_A.EQ.NB_C .AND. IROFFA.EQ.ICOFFC )
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, LQUERY, NOTRAN
      CHARACTER          COLBTOP, ROWBTOP
      INTEGER            IAROW, ICCOL, ICOFFC, ICROW, ICTXT, IINFO, IPW,
     $                   IROFFA, IROFFC, J, J1, J2, J3, JB, LCM, LCMQ,
     $                   LWMIN, MI, MPC0, MYCOL, MYROW, NI, NPA0, NPCOL,
     $                   NPROW, NQ, NQC0
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 4 ), IDUM2( 4 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK2MAT, PCLARFB,
     $                   PCLARFT, PCUNM2L, PB_TOPGET, PB_TOPSET, PXERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, ILCM, INDXG2P, NUMROC
      EXTERNAL           ICEIL, ILCM, INDXG2P, LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, ICHAR, MAX, MIN, MOD, REAL
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(900+CTXT_)
      ELSE
         LEFT = LSAME( SIDE, 'L' )
         NOTRAN = LSAME( TRANS, 'N' )
*
*        NQ is the order of Q
*
         IF( LEFT ) THEN
            NQ = M
            CALL CHK1MAT( M, 3, K, 5, IA, JA, DESCA, 9, INFO )
         ELSE
            NQ = N
            CALL CHK1MAT( N, 4, K, 5, IA, JA, DESCA, 9, INFO )
         END IF
         CALL CHK1MAT( M, 3, N, 4, IC, JC, DESCC, 14, INFO )
         IF( INFO.EQ.0 ) THEN
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            IROFFC = MOD( IC-1, DESCC( MB_ ) )
            ICOFFC = MOD( JC-1, DESCC( NB_ ) )
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            ICROW = INDXG2P( IC, DESCC( MB_ ), MYROW, DESCC( RSRC_ ),
     $                       NPROW )
            ICCOL = INDXG2P( JC, DESCC( NB_ ), MYCOL, DESCC( CSRC_ ),
     $                       NPCOL )
            MPC0 = NUMROC( M+IROFFC, DESCC( MB_ ), MYROW, ICROW, NPROW )
            NQC0 = NUMROC( N+ICOFFC, DESCC( NB_ ), MYCOL, ICCOL, NPCOL )
*
            IF( LEFT ) THEN
               LWMIN = MAX( ( DESCA( NB_ ) * ( DESCA( NB_ ) - 1 ) ) / 2,
     $                      ( MPC0 + NQC0 ) * DESCA( NB_ ) ) +
     $                 DESCA( NB_ ) * DESCA( NB_ )
            ELSE
               NPA0 = NUMROC( N+IROFFA, DESCA( MB_ ), MYROW, IAROW,
     $                        NPROW )
               LCM = ILCM( NPROW, NPCOL )
               LCMQ = LCM / NPCOL
               LWMIN =  MAX( ( DESCA( NB_ ) * ( DESCA( NB_ ) - 1 ) )
     $                  / 2, ( NQC0 + MAX( NPA0 + NUMROC( NUMROC(
     $                  N+ICOFFC, DESCA( NB_ ), 0, 0, NPCOL ),
     $                  DESCA( NB_ ), 0, 0, LCMQ ), MPC0 ) ) *
     $                  DESCA( NB_ ) ) + DESCA( NB_ ) * DESCA( NB_ )
            END IF
*
            WORK( 1 ) = CMPLX( REAL( LWMIN ) )
            LQUERY = ( LWORK.EQ.-1 )
            IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
               INFO = -1
            ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
               INFO = -2
            ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
               INFO = -5
            ELSE IF( .NOT.LEFT .AND. DESCA( MB_ ).NE.DESCC( NB_ ) ) THEN
               INFO = -(900+NB_)
            ELSE IF( LEFT .AND. IROFFA.NE.IROFFC ) THEN
               INFO = -12
            ELSE IF( LEFT .AND. IAROW.NE.ICROW ) THEN
               INFO = -12
            ELSE IF( .NOT.LEFT .AND. IROFFA.NE.ICOFFC ) THEN
               INFO = -13
            ELSE IF( LEFT .AND. DESCA( MB_ ).NE.DESCC( MB_ ) ) THEN
               INFO = -(1400+MB_)
            ELSE IF( ICTXT.NE.DESCC( CTXT_ ) ) THEN
               INFO = -(1400+CTXT_)
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -16
            END IF
         END IF
*
         IF( LEFT ) THEN
            IDUM1( 1 ) = ICHAR( 'L' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'R' )
         END IF
         IDUM2( 1 ) = 1
         IF( NOTRAN ) THEN
            IDUM1( 2 ) = ICHAR( 'N' )
         ELSE
            IDUM1( 2 ) = ICHAR( 'C' )
         END IF
         IDUM2( 2 ) = 2
         IDUM1( 3 ) = K
         IDUM2( 3 ) = 5
         IF( LWORK.EQ.-1 ) THEN
            IDUM1( 4 ) = -1
         ELSE
            IDUM1( 4 ) = 1
         END IF
         IDUM2( 4 ) = 16
         IF( LEFT ) THEN
            CALL PCHK2MAT( M, 3, K, 5, IA, JA, DESCA, 9, M, 3, N, 4, IC,
     $                     JC, DESCC, 14, 4, IDUM1, IDUM2, INFO )
         ELSE
            CALL PCHK2MAT( N, 4, K, 5, IA, JA, DESCA, 9, M, 3, N, 4, IC,
     $                     JC, DESCC, 14, 4, IDUM1, IDUM2, INFO )
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCUNMQL', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
     $   RETURN
*
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
      IF( ( LEFT .AND. NOTRAN ) .OR.
     $    ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
         J1 = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+K-1 ) + 1
         J2 = JA+K-1
         J3 = DESCA( NB_ )
      ELSE
         J1 = MAX( ( (JA+K-2) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1, JA )
         J2 = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+K-1 ) + 1
         J3 = -DESCA( NB_ )
      END IF
*
      IF( LEFT ) THEN
         NI = N
         IF( NOTRAN ) THEN
            CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'I-ring' )
         ELSE
            CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'D-ring' )
         END IF
         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
      ELSE
         MI = M
      END IF
*
*     Use unblocked code for the first block if necessary
*
      IF( ( LEFT .AND. NOTRAN ) .OR.
     $    ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
         JB = J1 - JA
         IF( LEFT ) THEN
            MI = M - K + JB
         ELSE
            NI = N - K + JB
         END IF
         CALL PCUNM2L( SIDE, TRANS, MI, NI, JB, A, IA, JA, DESCA, TAU,
     $                 C, IC, JC, DESCC, WORK, LWORK, IINFO )
      END IF
*
      IPW = DESCA( NB_ ) * DESCA( NB_ ) + 1
      DO 10 J = J1, J2, J3
         JB = MIN( DESCA( NB_ ), K-J+JA )
*
*        Form the triangular factor of the block reflector
*        H = H(j+jb-1) . . . H(j+1) H(j)
*
         CALL PCLARFT( 'Backward', 'Columnwise', NQ-K+J+JB-JA, JB,
     $                A, IA, J, DESCA, TAU, WORK, WORK( IPW ) )
         IF( LEFT ) THEN
*
*           H or H' is applied to C(ic:ic+m-k+j+jb-ja-1,jc:jc+n-1)
*
            MI = M - K + J + JB - JA
         ELSE
*
*           H or H' is applied to C(ic:ic+m-1,jc:jc+n-k+j+jb-ja-1)
*
            NI = N - K + J + JB - JA
         END IF
*
*        Apply H or H'
*
         CALL PCLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
     $                 JB, A, IA, J, DESCA, WORK, C, IC, JC, DESCC,
     $                 WORK( IPW ) )
   10 CONTINUE
*
      IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
     $    ( .NOT.LEFT .AND. NOTRAN ) ) THEN
         JB = J2 - JA
         IF( LEFT ) THEN
            MI = M - K + JB
         ELSE
            NI = N - K + JB
         END IF
         CALL PCUNM2L( SIDE, TRANS, MI, NI, JB, A, IA, JA, DESCA, TAU,
     $                 C, IC, JC, DESCC, WORK, LWORK, IINFO )
      END IF
*
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
      WORK( 1 ) = CMPLX( REAL( LWMIN ) )
*
      RETURN
*
*     End of PCUNMQL
*
      END