File: pdgebal.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (443 lines) | stat: -rw-r--r-- 14,280 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
      SUBROUTINE PDGEBAL( JOB, N, A, DESCA, ILO, IHI, SCALE, INFO )
*
*     Contribution from the Department of Computing Science and HPC2N,
*     Umea University, Sweden
*
*  -- ScaLAPACK computational routine (version 2.0.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     Univ. of Colorado Denver and University of California, Berkeley.
*     January, 2012
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            IHI, ILO, INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   A( * ), SCALE( * )
*     ..
*
*  Purpose
*  =======
*
*  PDGEBAL balances a general real matrix A.  This involves, first,
*  permuting A by a similarity transformation to isolate eigenvalues
*  in the first 1 to ILO-1 and last IHI+1 to N elements on the
*  diagonal; and second, applying a diagonal similarity transformation
*  to rows and columns ILO to IHI to make the rows and columns as
*  close in norm as possible.  Both steps are optional.
*
*  Balancing may reduce the 1-norm of the matrix, and improve the
*  accuracy of the computed eigenvalues and/or eigenvectors.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  Arguments
*  =========
*
*  JOB     (global input) CHARACTER*1
*          Specifies the operations to be performed on A:
*          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
*                  for i = 1,...,N;
*          = 'P':  permute only;
*          = 'S':  scale only;
*          = 'B':  both permute and scale.
*
*  N       (global input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (local input/output) DOUBLE PRECISION array, dimension
*          (DESCA(LLD_,LOCc(N))
*          On entry, the input matrix A.
*          On exit,  A is overwritten by the balanced matrix.
*          If JOB = 'N', A is not referenced.
*          See Further Details.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  ILO     (global output) INTEGER
*  IHI     (global output) INTEGER
*          ILO and IHI are set to integers such that on exit
*          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
*          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*
*  SCALE   (global output) DOUBLE PRECISION array, dimension (N)
*          Details of the permutations and scaling factors applied to
*          A.  If P(j) is the index of the row and column interchanged
*          with row and column j and D(j) is the scaling factor
*          applied to row and column j, then
*          SCALE(j) = P(j)    for j = 1,...,ILO-1
*                   = D(j)    for j = ILO,...,IHI
*                   = P(j)    for j = IHI+1,...,N.
*          The order in which the interchanges are made is N to IHI+1,
*          then 1 to ILO-1.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The permutations consist of row and column interchanges which put
*  the matrix in the form
*
*             ( T1   X   Y  )
*     P A P = (  0   B   Z  )
*             (  0   0   T2 )
*
*  where T1 and T2 are upper triangular matrices whose eigenvalues lie
*  along the diagonal.  The column indices ILO and IHI mark the starting
*  and ending columns of the submatrix B. Balancing consists of applying
*  a diagonal similarity transformation inv(D) * B * D to make the
*  1-norms of each row of B and its corresponding column nearly equal.
*  The output matrix is
*
*     ( T1     X*D          Y    )
*     (  0  inv(D)*B*D  inv(D)*Z ).
*     (  0      0           T2   )
*
*  Information about the permutations P and the diagonal matrix D is
*  returned in the vector SCALE.
*
*  This subroutine is based on the EISPACK routine BALANC. In principle,
*  the parallelism is extracted by using PBLAS and BLACS routines for
*  the permutation and balancing.
*
*  Modified by Tzu-Yi Chen, Computer Science Division, University of
*    California at Berkeley, USA
*
*  Parallel version by Robert Granat and Meiyue Shao, Department of
*    Computing Science and HPC2N, Umea University, Sweden
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   SCLFAC
      PARAMETER          ( SCLFAC = 2.0D+0 )
      DOUBLE PRECISION   FACTOR
      PARAMETER          ( FACTOR = 0.95D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOCONV
      INTEGER            I, ICA, IEXC, IRA, J, K, L, M, LLDA,
     $                   ICTXT, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
     $                   ARSRC, ACSRC
      DOUBLE PRECISION   C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
     $                   SFMIN2, ELEM
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   CR( 2 )
*     ..
*     .. External Functions ..
      LOGICAL            DISNAN, LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DISNAN, LSAME, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           PDSCAL, PDSWAP, PDAMAX, PXERBLA,
     $                   BLACS_GRIDINFO, CHK1MAT, DGSUM2D,
     $                   INFOG2L, PDELGET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
      INFO = 0
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters.
*
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE
         CALL CHK1MAT( N, 2, N, 2, 1, 1, DESCA, 4, INFO )
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDGEBAL', -INFO )
         RETURN
      END IF
*
*     Extract local leading dimension of A.
*
      LLDA = DESCA( LLD_ )
*
      K = 1
      L = N
*
      IF( N.EQ.0 )
     $   GO TO 210
*
      IF( LSAME( JOB, 'N' ) ) THEN
         DO 10 I = 1, N
            SCALE( I ) = ONE
   10    CONTINUE
         GO TO 210
      END IF
*
      IF( LSAME( JOB, 'S' ) )
     $   GO TO 120
*
*     Permutation to isolate eigenvalues if possible.
*
      GO TO 50
*
*     Row and column exchange.
*
   20 CONTINUE
      SCALE( M ) = J
      IF( J.EQ.M )
     $   GO TO 30
*
      CALL PDSWAP( L, A, 1, J, DESCA, 1, A, 1, M, DESCA, 1 )
      CALL PDSWAP( N-K+1, A, J, K, DESCA, DESCA(M_), A, M, K, DESCA,
     $             DESCA(M_) )
*
   30 CONTINUE
      GO TO ( 40, 80 )IEXC
*
*     Search for rows isolating an eigenvalue and push them down.
*
   40 CONTINUE
      IF( L.EQ.1 )
     $   GO TO 210
      L = L - 1
*
   50 CONTINUE
      DO 70 J = L, 1, -1
*
         DO 60 I = 1, L
            IF( I.EQ.J )
     $         GO TO 60
*
*           All processors need the information to make correct decisions.
*
            CALL PDELGET( 'All', '1-Tree', ELEM, A, J, I, DESCA )
            IF( ELEM.NE.ZERO )
     $         GO TO 70
   60    CONTINUE
*
         M = L
         IEXC = 1
         GO TO 20
   70 CONTINUE
*
      GO TO 90
*
*     Search for columns isolating an eigenvalue and push them left.
*
   80 CONTINUE
      K = K + 1
*
   90 CONTINUE
      DO 110 J = K, L
*
         DO 100 I = K, L
            IF( I.EQ.J )
     $         GO TO 100
*
*           All processors need the information to make correct decisions.
*
            CALL PDELGET( 'All', '1-Tree', ELEM, A, I, J, DESCA )
            IF( ELEM.NE.ZERO )
     $         GO TO 110
  100    CONTINUE
*
         M = K
         IEXC = 2
         GO TO 20
  110 CONTINUE
*
  120 CONTINUE
      DO 130 I = K, L
         SCALE( I ) = ONE
  130 CONTINUE
*
      IF( LSAME( JOB, 'P' ) )
     $   GO TO 210
*
*     Balance the submatrix in rows K to L.
*
*     Iterative loop for norm reduction.
*
      SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
      SFMAX1 = ONE / SFMIN1
      SFMIN2 = SFMIN1*SCLFAC
      SFMAX2 = ONE / SFMIN2
  140 CONTINUE
      NOCONV = .FALSE.
*
      DO 200 I = K, L
         C = ZERO
         R = ZERO
*
*        Compute local partial values of R and C in parallel and combine
*        with a call to the BLACS global summation routine distributing
*        information to all processors.
*
         DO 150 J = K, L
            IF( J.EQ.I )
     $         GO TO 150
            CALL INFOG2L( J, I, DESCA, NPROW, NPCOL, MYROW,
     $                    MYCOL, II, JJ, ARSRC, ACSRC )
            IF( MYROW.EQ.ARSRC .AND. MYCOL.EQ.ACSRC ) THEN
               C = C + ABS( A( II + (JJ-1)*LLDA ) )
            END IF
            CALL INFOG2L( I, J, DESCA, NPROW, NPCOL, MYROW,
     $                    MYCOL, II, JJ, ARSRC, ACSRC )
            IF( MYROW.EQ.ARSRC .AND. MYCOL.EQ.ACSRC ) THEN
               R = R + ABS( A( II + (JJ-1)*LLDA ) )
            END IF
  150    CONTINUE
         CR( 1 ) = C
         CR( 2 ) = R
         CALL DGSUM2D( ICTXT, 'All', '1-Tree', 2, 1, CR, 2, -1, -1 )
         C = CR( 1 )
         R = CR( 2 )
*
*        Find global maximum absolute values and indices in parallel.
*
         CALL PDAMAX( L, CA, ICA, A, 1, I, DESCA, 1 )
         CALL PDAMAX( N-K+1, RA, IRA, A, I, K, DESCA, DESCA(M_) )
*
*        Guard against zero C or R due to underflow.
*
         IF( C.EQ.ZERO .OR. R.EQ.ZERO )
     $      GO TO 200
         G = R / SCLFAC
         F = ONE
         S = C + R
  160    CONTINUE
         IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
     $       MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
         IF( DISNAN( C+F+CA+R+G+RA ) ) THEN
*
*           Exit if NaN to avoid infinite loop
*
            INFO = -3
            CALL PXERBLA( ICTXT, 'PDGEBAL', -INFO )
            RETURN
         END IF
         F = F*SCLFAC
         C = C*SCLFAC
         CA = CA*SCLFAC
         R = R / SCLFAC
         G = G / SCLFAC
         RA = RA / SCLFAC
         GO TO 160
*
  170    CONTINUE
         G = C / SCLFAC
  180    CONTINUE
         IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
     $       MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
         F = F / SCLFAC
         C = C / SCLFAC
         G = G / SCLFAC
         CA = CA / SCLFAC
         R = R*SCLFAC
         RA = RA*SCLFAC
         GO TO 180
*
*        Now balance.
*
  190    CONTINUE
         IF( ( C+R ).GE.FACTOR*S )
     $      GO TO 200
         IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
            IF( F*SCALE( I ).LE.SFMIN1 )
     $         GO TO 200
         END IF
         IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
            IF( SCALE( I ).GE.SFMAX1 / F )
     $         GO TO 200
         END IF
         G = ONE / F
         SCALE( I ) = SCALE( I )*F
         NOCONV = .TRUE.
*
         CALL PDSCAL( N-K+1, G, A, I, K, DESCA, DESCA(M_) )
         CALL PDSCAL( L, F, A, 1, I, DESCA, 1 )
*
  200 CONTINUE
*
      IF( NOCONV )
     $   GO TO 140
*
  210 CONTINUE
      ILO = K
      IHI = L
*
      RETURN
*
*     End of PDGEBAL
*
      END