File: pdgesvd.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (640 lines) | stat: -rw-r--r-- 23,232 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

      SUBROUTINE PDGESVD(JOBU,JOBVT,M,N,A,IA,JA,DESCA,S,U,IU,JU,DESCU,
     +                   VT,IVT,JVT,DESCVT,WORK,LWORK,INFO)
*
*  -- ScaLAPACK routine (version 1.7) --
*     Univ. of Tennessee, Oak Ridge National Laboratory
*     and Univ. of California Berkeley.
*     Jan 2006

*
*     .. Scalar Arguments ..
      CHARACTER JOBU,JOBVT
      INTEGER IA,INFO,IU,IVT,JA,JU,JVT,LWORK,M,N
*     ..
*     .. Array Arguments ..
      INTEGER DESCA(*),DESCU(*),DESCVT(*)
      DOUBLE PRECISION A(*),U(*),VT(*),WORK(*)
      DOUBLE PRECISION S(*)
*     ..
*
*  Purpose
*  =======
*
*  PDGESVD computes the singular value decomposition (SVD) of an
*  M-by-N matrix A, optionally computing the left and/or right
*  singular vectors. The SVD is written as
*
*       A = U * SIGMA * transpose(V)
*
*  where SIGMA is an M-by-N matrix which is zero except for its
*  min(M,N) diagonal elements, U is an M-by-M orthogonal matrix, and
*  V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
*  are the singular values of A and the columns of U and V are the
*  corresponding right and left singular vectors, respectively. The
*  singular values are returned in array S in decreasing order and
*  only the first min(M,N) columns of U and rows of VT = V**T are
*  computed.
*
*  Notes
*  =====
*  Each global data object is described by an associated description
*  vector. This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix, and
*  assume that its process grid has dimension r x c. LOCr( K ) denotes
*  the number of elements of K that a process would receive if K were
*  distributed over the r processes of its process column. Similarly,
*  LOCc( K ) denotes the number of elements of K that a process would
*  receive if K were distributed over the c processes of its process
*  row. The values of LOCr() and LOCc() may be determined via a call
*  to the ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*          MP = number of local rows in A and U
*          NQ = number of local columns in A and VT
*          SIZE = min( M, N )
*          SIZEQ = number of local columns in U
*          SIZEP = number of local rows in VT
*
*  JOBU    (global input) CHARACTER*1
*          Specifies options for computing U:
*          = 'V':  the first SIZE columns of U (the left singular
*                  vectors) are returned in the array U;
*          = 'N':  no columns of U (no left singular vectors) are
*                  computed.
*
*  JOBVT   (global input) CHARACTER*1
*          Specifies options for computing V**T:
*          = 'V':  the first SIZE rows of V**T (the right singular
*                  vectors) are returned in the array VT;
*          = 'N':  no rows of V**T (no right singular vectors) are
*                  computed.
*
*  M       (global input) INTEGER
*          The number of rows of the input matrix A.  M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns of the input matrix A.  N >= 0.
*
*  A       (local input/workspace) block cyclic DOUBLE PRECISION
*          array,
*          global dimension (M, N), local dimension (MP, NQ)
*          On exit, the contents of A are destroyed.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix A.
*
*  S       (global output) DOUBLE PRECISION   array, dimension SIZE
*          The singular values of A, sorted so that S(i) >= S(i+1).
*
*  U       (local output) DOUBLE PRECISION   array, local dimension
*          (MP, SIZEQ), global dimension (M, SIZE)
*          if JOBU = 'V', U contains the first min(m,n) columns of U
*          if JOBU = 'N', U is not referenced.
*
*  IU      (global input) INTEGER
*          The row index in the global array U indicating the first
*          row of sub( U ).
*
*  JU      (global input) INTEGER
*          The column index in the global array U indicating the
*          first column of sub( U ).
*
*  DESCU   (global input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix U.
*
*  VT      (local output) DOUBLE PRECISION   array, local dimension
*          (SIZEP, NQ), global dimension (SIZE, N).
*          If JOBVT = 'V', VT contains the first SIZE rows of
*          V**T. If JOBVT = 'N', VT is not referenced.
*
*  IVT     (global input) INTEGER
*          The row index in the global array VT indicating the first
*          row of sub( VT ).
*
*  JVT     (global input) INTEGER
*          The column index in the global array VT indicating the
*          first column of sub( VT ).
*
*  DESCVT   (global input) INTEGER array of dimension DLEN_
*          The array descriptor for the distributed matrix VT.
*
*  WORK    (local workspace/output) DOUBLE PRECISION   array, dimension
*          (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (local input) INTEGER
*          The dimension of the array WORK.
*
*          LWORK >= 1 + 6*SIZEB + MAX(WATOBD, WBDTOSVD),
*
*          where SIZEB = MAX(M,N), and WATOBD and WBDTOSVD refer,
*          respectively, to the workspace required to bidiagonalize
*          the matrix A and to go from the bidiagonal matrix to the
*          singular value decomposition U*S*VT.
*
*          For WATOBD, the following holds:
*
*          WATOBD = MAX(MAX(WPDLANGE,WPDGEBRD),
*                       MAX(WPDLARED2D,WP(pre)LARED1D)),
*
*          where WPDLANGE, WPDLARED1D, WPDLARED2D, WPDGEBRD are the
*          workspaces required respectively for the subprograms
*          PDLANGE, PDLARED1D, PDLARED2D, PDGEBRD. Using the
*          standard notation
*
*          MP = NUMROC( M, MB, MYROW, DESCA( CTXT_ ), NPROW),
*          NQ = NUMROC( N, NB, MYCOL, DESCA( LLD_ ), NPCOL),
*
*          the workspaces required for the above subprograms are
*
*          WPDLANGE = MP,
*          WPDLARED1D = NQ0,
*          WPDLARED2D = MP0,
*          WPDGEBRD = NB*(MP + NQ + 1) + NQ,
*
*          where NQ0 and MP0 refer, respectively, to the values obtained
*          at MYCOL = 0 and MYROW = 0. In general, the upper limit for
*          the workspace is given by a workspace required on
*          processor (0,0):
*
*          WATOBD <= NB*(MP0 + NQ0 + 1) + NQ0.
*
*          In case of a homogeneous process grid this upper limit can
*          be used as an estimate of the minimum workspace for every
*          processor.
*
*          For WBDTOSVD, the following holds:
*
*          WBDTOSVD = SIZE*(WANTU*NRU + WANTVT*NCVT) +
*                     MAX(WDBDSQR,
*                         MAX(WANTU*WPDORMBRQLN, WANTVT*WPDORMBRPRT)),
*
*          where
*
*                          1, if left(right) singular vectors are wanted
*          WANTU(WANTVT) =
*                          0, otherwise
*
*          and WDBDSQR, WPDORMBRQLN and WPDORMBRPRT refer respectively
*          to the workspace required for the subprograms DBDSQR,
*          PDORMBR(QLN), and PDORMBR(PRT), where QLN and PRT are the
*          values of the arguments VECT, SIDE, and TRANS in the call
*          to PDORMBR. NRU is equal to the local number of rows of
*          the matrix U when distributed 1-dimensional "column" of
*          processes. Analogously, NCVT is equal to the local number
*          of columns of the matrix VT when distributed across
*          1-dimensional "row" of processes. Calling the LAPACK
*          procedure DBDSQR requires
*
*          WDBDSQR = MAX(1, 4*SIZE )
*
*          on every processor. Finally,
*
*          WPDORMBRQLN = MAX( (NB*(NB-1))/2, (SIZEQ+MP)*NB)+NB*NB,
*          WPDORMBRPRT = MAX( (MB*(MB-1))/2, (SIZEP+NQ)*MB )+MB*MB,
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          size for the work array. The required workspace is returned
*          as the first element of WORK and no error message is issued
*          by PXERBLA.
*
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value

*          > 0:  if DBDSQR did not converge
*                If INFO = MIN(M,N) + 1, then PDGESVD has detected
*                heterogeneity by finding that eigenvalues were not
*                identical across the process grid. In this case, the
*                accuracy of the results from PDGESVD cannot be
*                guaranteed.
*
*  =====================================================================
*
*  The results of PDGEBRD, and therefore PDGESVD, may vary slightly
*  from run to run with the same input data. If repeatability is an
*  issue, call BLACS_SET with the appropriate option after defining
*  the process grid.
*
*  Alignment requirements
*  ======================
*
*  The routine PDGESVD inherits the same alignement requirement as
*  the routine PDGEBRD, namely:
*
*  The distributed submatrix sub( A ) must verify some alignment proper-
*  ties, namely the following expressions should be true:
*  ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA )
*          where NB = MB_A = NB_A,
*          IROFFA = MOD( IA-1, NB ), ICOFFA = MOD( JA-1, NB ),
*
*  =====================================================================
*
*
*     .. Parameters ..
      INTEGER BLOCK_CYCLIC_2D,DLEN_,DTYPE_,CTXT_,M_,N_,MB_,NB_,RSRC_,
     +        CSRC_,LLD_,ITHVAL
      PARAMETER (BLOCK_CYCLIC_2D=1,DLEN_=9,DTYPE_=1,CTXT_=2,M_=3,N_=4,
     +          MB_=5,NB_=6,RSRC_=7,CSRC_=8,LLD_=9,ITHVAL=10)
      DOUBLE PRECISION ZERO,ONE
      PARAMETER (ZERO= (0.0D+0),ONE= (1.0D+0))
*     ..
*     .. Local Scalars ..
      CHARACTER UPLO
      INTEGER CONTEXTC,CONTEXTR,I,INDD,INDD2,INDE,INDE2,INDTAUP,INDTAUQ,
     +        INDU,INDV,INDWORK,IOFFD,IOFFE,ISCALE,J,K,LDU,LDVT,LLWORK,
     +        LWMIN,MAXIM,MB,MP,MYPCOL,MYPCOLC,MYPCOLR,MYPROW,MYPROWC,
     +        MYPROWR,NB,NCVT,NPCOL,NPCOLC,NPCOLR,NPROCS,NPROW,NPROWC,
     +        NPROWR,NQ,NRU,SIZE,SIZEB,SIZEP,SIZEPOS,SIZEQ,WANTU,WANTVT,
     +        WATOBD,WBDTOSVD,WDBDSQR,WPDGEBRD,WPDLANGE,WPDORMBRPRT,
     +        WPDORMBRQLN
      DOUBLE PRECISION ANRM,BIGNUM,EPS,RMAX,RMIN,SAFMIN,SIGMA,SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER DESCTU(DLEN_),DESCTVT(DLEN_),IDUM1(3),IDUM2(3)
      DOUBLE PRECISION C(1,1)
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      INTEGER NUMROC
      DOUBLE PRECISION PDLAMCH,PDLANGE
      EXTERNAL LSAME,NUMROC,PDLAMCH,PZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL BLACS_GET,BLACS_GRIDEXIT,BLACS_GRIDINFO,BLACS_GRIDINIT,
     +         CHK1MAT,DBDSQR,DESCINIT,DGAMN2D,DGAMX2D,DSCAL,IGAMX2D,
     +         IGEBR2D,IGEBS2D,PCHK1MAT,PDGEBRD,PDGEMR2D,PDLARED1D,
     +         PDLARED2D,PDLASCL,PDLASET,PDORMBR,PXERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX,MIN,SQRT,DBLE
*     ..
*     .. Executable Statements ..
*     This is just to keep ftnchek happy
      IF (BLOCK_CYCLIC_2D*DTYPE_*LLD_*MB_*M_*NB_*N_.LT.0) RETURN
*
      CALL BLACS_GRIDINFO(DESCA(CTXT_),NPROW,NPCOL,MYPROW,MYPCOL)
      ISCALE = 0
      INFO = 0
*
      IF (NPROW.EQ.-1) THEN
          INFO = - (800+CTXT_)
      ELSE
*
          SIZE = MIN(M,N)
          SIZEB = MAX(M,N)
          NPROCS = NPROW*NPCOL
          IF (M.GE.N) THEN
              IOFFD = JA - 1
              IOFFE = IA - 1
              SIZEPOS = 1
          ELSE
              IOFFD = IA - 1
              IOFFE = JA - 1
              SIZEPOS = 3
          END IF
*
          IF (LSAME(JOBU,'V')) THEN
              WANTU = 1
          ELSE
              WANTU = 0
          END IF
          IF (LSAME(JOBVT,'V')) THEN
              WANTVT = 1
          ELSE
              WANTVT = 0
          END IF
*
          CALL CHK1MAT(M,3,N,4,IA,JA,DESCA,8,INFO)
          IF (WANTU.EQ.1) THEN
              CALL CHK1MAT(M,3,SIZE,SIZEPOS,IU,JU,DESCU,13,INFO)
          END IF
          IF (WANTVT.EQ.1) THEN
              CALL CHK1MAT(SIZE,SIZEPOS,N,4,IVT,JVT,DESCVT,17,INFO)
          END IF
          CALL IGAMX2D(DESCA(CTXT_),'A',' ',1,1,INFO,1,1,1,-1,-1,0)
*
          IF (INFO.EQ.0) THEN
*
*           Set up pointers into the WORK array.
*
              INDD = 2
              INDE = INDD + SIZEB + IOFFD
              INDD2 = INDE + SIZEB + IOFFE
              INDE2 = INDD2 + SIZEB + IOFFD
*
              INDTAUQ = INDE2 + SIZEB + IOFFE
              INDTAUP = INDTAUQ + SIZEB + JA - 1
              INDWORK = INDTAUP + SIZEB + IA - 1
              LLWORK = LWORK - INDWORK + 1
*
*           Initialize contexts for "column" and "row" process matrices.
*
              CALL BLACS_GET(DESCA(CTXT_),10,CONTEXTC)
              CALL BLACS_GRIDINIT(CONTEXTC,'R',NPROCS,1)
              CALL BLACS_GRIDINFO(CONTEXTC,NPROWC,NPCOLC,MYPROWC,
     +                            MYPCOLC)
              CALL BLACS_GET(DESCA(CTXT_),10,CONTEXTR)
              CALL BLACS_GRIDINIT(CONTEXTR,'R',1,NPROCS)
              CALL BLACS_GRIDINFO(CONTEXTR,NPROWR,NPCOLR,MYPROWR,
     +                            MYPCOLR)
*
*           Set local dimensions of matrices (this is for MB=NB=1).
*
              NRU = NUMROC(M,1,MYPROWC,0,NPROCS)
              NCVT = NUMROC(N,1,MYPCOLR,0,NPROCS)
              NB = DESCA(NB_)
              MB = DESCA(MB_)
              MP = NUMROC(M,MB,MYPROW,DESCA(RSRC_),NPROW)
              NQ = NUMROC(N,NB,MYPCOL,DESCA(CSRC_),NPCOL)
              IF (WANTVT.EQ.1) THEN
                  SIZEP = NUMROC(SIZE,DESCVT(MB_),MYPROW,DESCVT(RSRC_),
     +                    NPROW)
              ELSE
                  SIZEP = 0
              END IF
              IF (WANTU.EQ.1) THEN
                  SIZEQ = NUMROC(SIZE,DESCU(NB_),MYPCOL,DESCU(CSRC_),
     +                    NPCOL)
              ELSE
                  SIZEQ = 0
              END IF
*
*           Transmit MAX(NQ0, MP0).
*
              IF (MYPROW.EQ.0 .AND. MYPCOL.EQ.0) THEN
                  MAXIM = MAX(NQ,MP)
                  CALL IGEBS2D(DESCA(CTXT_),'All',' ',1,1,MAXIM,1)
              ELSE
                  CALL IGEBR2D(DESCA(CTXT_),'All',' ',1,1,MAXIM,1,0,0)
              END IF
*
              WPDLANGE = MP
              WPDGEBRD = NB* (MP+NQ+1) + NQ
              WATOBD = MAX(MAX(WPDLANGE,WPDGEBRD),MAXIM)
*
              WDBDSQR = MAX(1,4*SIZE)
              WPDORMBRQLN = MAX((NB* (NB-1))/2, (SIZEQ+MP)*NB) + NB*NB
              WPDORMBRPRT = MAX((MB* (MB-1))/2, (SIZEP+NQ)*MB) + MB*MB
              WBDTOSVD = SIZE* (WANTU*NRU+WANTVT*NCVT) +
     +                   MAX(WDBDSQR,MAX(WANTU*WPDORMBRQLN,
     +                   WANTVT*WPDORMBRPRT))
*
*           Finally, calculate required workspace.
*
              LWMIN = 1 + 6*SIZEB + MAX(WATOBD,WBDTOSVD)
              WORK(1) = DBLE(LWMIN)
*
              IF (WANTU.NE.1 .AND. .NOT. (LSAME(JOBU,'N'))) THEN
                  INFO = -1
              ELSE IF (WANTVT.NE.1 .AND. .NOT. (LSAME(JOBVT,'N'))) THEN
                  INFO = -2
              ELSE IF (LWORK.LT.LWMIN .AND. LWORK.NE.-1) THEN
                  INFO = -19
              END IF
*
          END IF
*
          IDUM1(1) = WANTU
          IDUM1(2) = WANTVT
          IF (LWORK.EQ.-1) THEN
              IDUM1(3) = -1
          ELSE
              IDUM1(3) = 1
          END IF
          IDUM2(1) = 1
          IDUM2(2) = 2
          IDUM2(3) = 19
          CALL PCHK1MAT(M,3,N,4,IA,JA,DESCA,8,3,IDUM1,IDUM2,INFO)
          IF (INFO.EQ.0) THEN
              IF (WANTU.EQ.1) THEN
                  CALL PCHK1MAT(M,3,SIZE,4,IU,JU,DESCU,13,0,IDUM1,IDUM2,
     +                          INFO)
              END IF
              IF (WANTVT.EQ.1) THEN
                  CALL PCHK1MAT(SIZE,3,N,4,IVT,JVT,DESCVT,17,0,IDUM1,
     +                          IDUM2,INFO)
              END IF
          END IF
*
      END IF
*
      IF (INFO.NE.0) THEN
          CALL PXERBLA(DESCA(CTXT_),'PDGESVD',-INFO)
          RETURN
      ELSE IF (LWORK.EQ.-1) THEN
          GO TO 40
      END IF
*
*     Quick return if possible.
*
      IF (M.LE.0 .OR. N.LE.0) GO TO 40
*
*     Get machine constants.
*
      SAFMIN = PDLAMCH(DESCA(CTXT_),'Safe minimum')
      EPS = PDLAMCH(DESCA(CTXT_),'Precision')
      SMLNUM = SAFMIN/EPS
      BIGNUM = ONE/SMLNUM
      RMIN = SQRT(SMLNUM)
      RMAX = MIN(SQRT(BIGNUM),ONE/SQRT(SQRT(SAFMIN)))
*
*     Scale matrix to allowable range, if necessary.
*
      ANRM = PDLANGE('1',M,N,A,IA,JA,DESCA,WORK(INDWORK))
      IF (ANRM.GT.ZERO .AND. ANRM.LT.RMIN) THEN
          ISCALE = 1
          SIGMA = RMIN/ANRM
      ELSE IF (ANRM.GT.RMAX) THEN
          ISCALE = 1
          SIGMA = RMAX/ANRM
      END IF
*
      IF (ISCALE.EQ.1) THEN
          CALL PDLASCL('G',ONE,SIGMA,M,N,A,IA,JA,DESCA,INFO)
      END IF
*
      CALL PDGEBRD(M,N,A,IA,JA,DESCA,WORK(INDD),WORK(INDE),
     +             WORK(INDTAUQ),WORK(INDTAUP),WORK(INDWORK),LLWORK,
     +             INFO)
*
*     Copy D and E to all processes.
*     Array D is in local array of dimension:
*     LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise.
*     Array E is in local array of dimension
*     LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
*
      IF (M.GE.N) THEN
*        Distribute D
          CALL PDLARED1D(N+IOFFD,IA,JA,DESCA,WORK(INDD),WORK(INDD2),
     +                   WORK(INDWORK),LLWORK)
*        Distribute E
          CALL PDLARED2D(M+IOFFE,IA,JA,DESCA,WORK(INDE),WORK(INDE2),
     +                   WORK(INDWORK),LLWORK)
      ELSE
*        Distribute D
          CALL PDLARED2D(M+IOFFD,IA,JA,DESCA,WORK(INDD),WORK(INDD2),
     +                   WORK(INDWORK),LLWORK)
*        Distribute E
          CALL PDLARED1D(N+IOFFE,IA,JA,DESCA,WORK(INDE),WORK(INDE2),
     +                   WORK(INDWORK),LLWORK)
      END IF
*
*     Prepare for calling PDBDSQR.
*
      IF (M.GE.N) THEN
          UPLO = 'U'
      ELSE
          UPLO = 'L'
      END IF
*
      INDU = INDWORK
      INDV = INDU + SIZE*NRU*WANTU
      INDWORK = INDV + SIZE*NCVT*WANTVT
*
      LDU = MAX(1,NRU)
      LDVT = MAX(1,SIZE)
*
      CALL DESCINIT(DESCTU,M,SIZE,1,1,0,0,CONTEXTC,LDU,INFO)
      CALL DESCINIT(DESCTVT,SIZE,N,1,1,0,0,CONTEXTR,LDVT,INFO)
*
      IF (WANTU.EQ.1) THEN
          CALL PDLASET('Full',M,SIZE,ZERO,ONE,WORK(INDU),1,1,DESCTU)
      ELSE
          NRU = 0
      END IF
*
      IF (WANTVT.EQ.1) THEN
          CALL PDLASET('Full',SIZE,N,ZERO,ONE,WORK(INDV),1,1,DESCTVT)
      ELSE
          NCVT = 0
      END IF
*
      CALL DBDSQR(UPLO,SIZE,NCVT,NRU,0,WORK(INDD2+IOFFD),
     +            WORK(INDE2+IOFFE),WORK(INDV),SIZE,WORK(INDU),LDU,C,1,
     +            WORK(INDWORK),INFO)
*
*     Redistribute elements of U and VT in the block-cyclic fashion.
*
      IF (WANTU.EQ.1) CALL PDGEMR2D(M,SIZE,WORK(INDU),1,1,DESCTU,U,IU,
     +                              JU,DESCU,DESCU(CTXT_))
*
      IF (WANTVT.EQ.1) CALL PDGEMR2D(SIZE,N,WORK(INDV),1,1,DESCTVT,VT,
     +                               IVT,JVT,DESCVT,DESCVT(CTXT_))
*
*     Set to ZERO "non-square" elements of the larger matrices U, VT.
*
      IF (M.GT.N .AND. WANTU.EQ.1) THEN
          CALL PDLASET('Full',M-SIZE,SIZE,ZERO,ZERO,U,IA+SIZE,JU,DESCU)
      ELSE IF (N.GT.M .AND. WANTVT.EQ.1) THEN
          CALL PDLASET('Full',SIZE,N-SIZE,ZERO,ZERO,VT,IVT,JVT+SIZE,
     +                 DESCVT)
      END IF
*
*     Multiply Householder rotations from bidiagonalized matrix.
*
      IF (WANTU.EQ.1) CALL PDORMBR('Q','L','N',M,SIZE,N,A,IA,JA,DESCA,
     +                             WORK(INDTAUQ),U,IU,JU,DESCU,
     +                             WORK(INDWORK),LLWORK,INFO)
*
      IF (WANTVT.EQ.1) CALL PDORMBR('P','R','T',SIZE,N,M,A,IA,JA,DESCA,
     +                              WORK(INDTAUP),VT,IVT,JVT,DESCVT,
     +                              WORK(INDWORK),LLWORK,INFO)
*
*     Copy singular values into output array S.
*
      DO 10 I = 1,SIZE
          S(I) = WORK(INDD2+IOFFD+I-1)
   10 CONTINUE
*
*     If matrix was scaled, then rescale singular values appropriately.
*
      IF (ISCALE.EQ.1) THEN
          CALL DSCAL(SIZE,ONE/SIGMA,S,1)
      END IF
*
*     Compare every ith eigenvalue, or all if there are only a few,
*     across the process grid to check for heterogeneity.
*
      IF (SIZE.LE.ITHVAL) THEN
          J = SIZE
          K = 1
      ELSE
          J = SIZE/ITHVAL
          K = ITHVAL
      END IF
*
      DO 20 I = 1,J
          WORK(I+INDE) = S((I-1)*K+1)
          WORK(I+INDD2) = S((I-1)*K+1)
   20 CONTINUE
*
      CALL DGAMN2D(DESCA(CTXT_),'a',' ',J,1,WORK(1+INDE),J,1,1,-1,-1,0)
      CALL DGAMX2D(DESCA(CTXT_),'a',' ',J,1,WORK(1+INDD2),J,1,1,-1,-1,0)
*
      DO 30 I = 1,J
          IF ((WORK(I+INDE)-WORK(I+INDD2)).NE.ZERO) THEN
              INFO = SIZE + 1
          END IF
   30 CONTINUE
*
   40 CONTINUE
*
      CALL BLACS_GRIDEXIT(CONTEXTC)
      CALL BLACS_GRIDEXIT(CONTEXTR)
*
*     End of PDGESVD
*
      RETURN
      END