1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
SUBROUTINE PDGESVD(JOBU,JOBVT,M,N,A,IA,JA,DESCA,S,U,IU,JU,DESCU,
+ VT,IVT,JVT,DESCVT,WORK,LWORK,INFO)
*
* -- ScaLAPACK routine (version 1.7) --
* Univ. of Tennessee, Oak Ridge National Laboratory
* and Univ. of California Berkeley.
* Jan 2006
*
* .. Scalar Arguments ..
CHARACTER JOBU,JOBVT
INTEGER IA,INFO,IU,IVT,JA,JU,JVT,LWORK,M,N
* ..
* .. Array Arguments ..
INTEGER DESCA(*),DESCU(*),DESCVT(*)
DOUBLE PRECISION A(*),U(*),VT(*),WORK(*)
DOUBLE PRECISION S(*)
* ..
*
* Purpose
* =======
*
* PDGESVD computes the singular value decomposition (SVD) of an
* M-by-N matrix A, optionally computing the left and/or right
* singular vectors. The SVD is written as
*
* A = U * SIGMA * transpose(V)
*
* where SIGMA is an M-by-N matrix which is zero except for its
* min(M,N) diagonal elements, U is an M-by-M orthogonal matrix, and
* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
* are the singular values of A and the columns of U and V are the
* corresponding right and left singular vectors, respectively. The
* singular values are returned in array S in decreasing order and
* only the first min(M,N) columns of U and rows of VT = V**T are
* computed.
*
* Notes
* =====
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix, and
* assume that its process grid has dimension r x c. LOCr( K ) denotes
* the number of elements of K that a process would receive if K were
* distributed over the r processes of its process column. Similarly,
* LOCc( K ) denotes the number of elements of K that a process would
* receive if K were distributed over the c processes of its process
* row. The values of LOCr() and LOCc() may be determined via a call
* to the ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* MP = number of local rows in A and U
* NQ = number of local columns in A and VT
* SIZE = min( M, N )
* SIZEQ = number of local columns in U
* SIZEP = number of local rows in VT
*
* JOBU (global input) CHARACTER*1
* Specifies options for computing U:
* = 'V': the first SIZE columns of U (the left singular
* vectors) are returned in the array U;
* = 'N': no columns of U (no left singular vectors) are
* computed.
*
* JOBVT (global input) CHARACTER*1
* Specifies options for computing V**T:
* = 'V': the first SIZE rows of V**T (the right singular
* vectors) are returned in the array VT;
* = 'N': no rows of V**T (no right singular vectors) are
* computed.
*
* M (global input) INTEGER
* The number of rows of the input matrix A. M >= 0.
*
* N (global input) INTEGER
* The number of columns of the input matrix A. N >= 0.
*
* A (local input/workspace) block cyclic DOUBLE PRECISION
* array,
* global dimension (M, N), local dimension (MP, NQ)
* On exit, the contents of A are destroyed.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrix A.
*
* S (global output) DOUBLE PRECISION array, dimension SIZE
* The singular values of A, sorted so that S(i) >= S(i+1).
*
* U (local output) DOUBLE PRECISION array, local dimension
* (MP, SIZEQ), global dimension (M, SIZE)
* if JOBU = 'V', U contains the first min(m,n) columns of U
* if JOBU = 'N', U is not referenced.
*
* IU (global input) INTEGER
* The row index in the global array U indicating the first
* row of sub( U ).
*
* JU (global input) INTEGER
* The column index in the global array U indicating the
* first column of sub( U ).
*
* DESCU (global input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrix U.
*
* VT (local output) DOUBLE PRECISION array, local dimension
* (SIZEP, NQ), global dimension (SIZE, N).
* If JOBVT = 'V', VT contains the first SIZE rows of
* V**T. If JOBVT = 'N', VT is not referenced.
*
* IVT (global input) INTEGER
* The row index in the global array VT indicating the first
* row of sub( VT ).
*
* JVT (global input) INTEGER
* The column index in the global array VT indicating the
* first column of sub( VT ).
*
* DESCVT (global input) INTEGER array of dimension DLEN_
* The array descriptor for the distributed matrix VT.
*
* WORK (local workspace/output) DOUBLE PRECISION array, dimension
* (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (local input) INTEGER
* The dimension of the array WORK.
*
* LWORK >= 1 + 6*SIZEB + MAX(WATOBD, WBDTOSVD),
*
* where SIZEB = MAX(M,N), and WATOBD and WBDTOSVD refer,
* respectively, to the workspace required to bidiagonalize
* the matrix A and to go from the bidiagonal matrix to the
* singular value decomposition U*S*VT.
*
* For WATOBD, the following holds:
*
* WATOBD = MAX(MAX(WPDLANGE,WPDGEBRD),
* MAX(WPDLARED2D,WP(pre)LARED1D)),
*
* where WPDLANGE, WPDLARED1D, WPDLARED2D, WPDGEBRD are the
* workspaces required respectively for the subprograms
* PDLANGE, PDLARED1D, PDLARED2D, PDGEBRD. Using the
* standard notation
*
* MP = NUMROC( M, MB, MYROW, DESCA( CTXT_ ), NPROW),
* NQ = NUMROC( N, NB, MYCOL, DESCA( LLD_ ), NPCOL),
*
* the workspaces required for the above subprograms are
*
* WPDLANGE = MP,
* WPDLARED1D = NQ0,
* WPDLARED2D = MP0,
* WPDGEBRD = NB*(MP + NQ + 1) + NQ,
*
* where NQ0 and MP0 refer, respectively, to the values obtained
* at MYCOL = 0 and MYROW = 0. In general, the upper limit for
* the workspace is given by a workspace required on
* processor (0,0):
*
* WATOBD <= NB*(MP0 + NQ0 + 1) + NQ0.
*
* In case of a homogeneous process grid this upper limit can
* be used as an estimate of the minimum workspace for every
* processor.
*
* For WBDTOSVD, the following holds:
*
* WBDTOSVD = SIZE*(WANTU*NRU + WANTVT*NCVT) +
* MAX(WDBDSQR,
* MAX(WANTU*WPDORMBRQLN, WANTVT*WPDORMBRPRT)),
*
* where
*
* 1, if left(right) singular vectors are wanted
* WANTU(WANTVT) =
* 0, otherwise
*
* and WDBDSQR, WPDORMBRQLN and WPDORMBRPRT refer respectively
* to the workspace required for the subprograms DBDSQR,
* PDORMBR(QLN), and PDORMBR(PRT), where QLN and PRT are the
* values of the arguments VECT, SIDE, and TRANS in the call
* to PDORMBR. NRU is equal to the local number of rows of
* the matrix U when distributed 1-dimensional "column" of
* processes. Analogously, NCVT is equal to the local number
* of columns of the matrix VT when distributed across
* 1-dimensional "row" of processes. Calling the LAPACK
* procedure DBDSQR requires
*
* WDBDSQR = MAX(1, 4*SIZE )
*
* on every processor. Finally,
*
* WPDORMBRQLN = MAX( (NB*(NB-1))/2, (SIZEQ+MP)*NB)+NB*NB,
* WPDORMBRPRT = MAX( (MB*(MB-1))/2, (SIZEP+NQ)*MB )+MB*MB,
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* size for the work array. The required workspace is returned
* as the first element of WORK and no error message is issued
* by PXERBLA.
*
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if DBDSQR did not converge
* If INFO = MIN(M,N) + 1, then PDGESVD has detected
* heterogeneity by finding that eigenvalues were not
* identical across the process grid. In this case, the
* accuracy of the results from PDGESVD cannot be
* guaranteed.
*
* =====================================================================
*
* The results of PDGEBRD, and therefore PDGESVD, may vary slightly
* from run to run with the same input data. If repeatability is an
* issue, call BLACS_SET with the appropriate option after defining
* the process grid.
*
* Alignment requirements
* ======================
*
* The routine PDGESVD inherits the same alignement requirement as
* the routine PDGEBRD, namely:
*
* The distributed submatrix sub( A ) must verify some alignment proper-
* ties, namely the following expressions should be true:
* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA )
* where NB = MB_A = NB_A,
* IROFFA = MOD( IA-1, NB ), ICOFFA = MOD( JA-1, NB ),
*
* =====================================================================
*
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D,DLEN_,DTYPE_,CTXT_,M_,N_,MB_,NB_,RSRC_,
+ CSRC_,LLD_,ITHVAL
PARAMETER (BLOCK_CYCLIC_2D=1,DLEN_=9,DTYPE_=1,CTXT_=2,M_=3,N_=4,
+ MB_=5,NB_=6,RSRC_=7,CSRC_=8,LLD_=9,ITHVAL=10)
DOUBLE PRECISION ZERO,ONE
PARAMETER (ZERO= (0.0D+0),ONE= (1.0D+0))
* ..
* .. Local Scalars ..
CHARACTER UPLO
INTEGER CONTEXTC,CONTEXTR,I,INDD,INDD2,INDE,INDE2,INDTAUP,INDTAUQ,
+ INDU,INDV,INDWORK,IOFFD,IOFFE,ISCALE,J,K,LDU,LDVT,LLWORK,
+ LWMIN,MAXIM,MB,MP,MYPCOL,MYPCOLC,MYPCOLR,MYPROW,MYPROWC,
+ MYPROWR,NB,NCVT,NPCOL,NPCOLC,NPCOLR,NPROCS,NPROW,NPROWC,
+ NPROWR,NQ,NRU,SIZE,SIZEB,SIZEP,SIZEPOS,SIZEQ,WANTU,WANTVT,
+ WATOBD,WBDTOSVD,WDBDSQR,WPDGEBRD,WPDLANGE,WPDORMBRPRT,
+ WPDORMBRQLN
DOUBLE PRECISION ANRM,BIGNUM,EPS,RMAX,RMIN,SAFMIN,SIGMA,SMLNUM
* ..
* .. Local Arrays ..
INTEGER DESCTU(DLEN_),DESCTVT(DLEN_),IDUM1(3),IDUM2(3)
DOUBLE PRECISION C(1,1)
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC
DOUBLE PRECISION PDLAMCH,PDLANGE
EXTERNAL LSAME,NUMROC,PDLAMCH,PZLANGE
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GET,BLACS_GRIDEXIT,BLACS_GRIDINFO,BLACS_GRIDINIT,
+ CHK1MAT,DBDSQR,DESCINIT,DGAMN2D,DGAMX2D,DSCAL,IGAMX2D,
+ IGEBR2D,IGEBS2D,PCHK1MAT,PDGEBRD,PDGEMR2D,PDLARED1D,
+ PDLARED2D,PDLASCL,PDLASET,PDORMBR,PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX,MIN,SQRT,DBLE
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF (BLOCK_CYCLIC_2D*DTYPE_*LLD_*MB_*M_*NB_*N_.LT.0) RETURN
*
CALL BLACS_GRIDINFO(DESCA(CTXT_),NPROW,NPCOL,MYPROW,MYPCOL)
ISCALE = 0
INFO = 0
*
IF (NPROW.EQ.-1) THEN
INFO = - (800+CTXT_)
ELSE
*
SIZE = MIN(M,N)
SIZEB = MAX(M,N)
NPROCS = NPROW*NPCOL
IF (M.GE.N) THEN
IOFFD = JA - 1
IOFFE = IA - 1
SIZEPOS = 1
ELSE
IOFFD = IA - 1
IOFFE = JA - 1
SIZEPOS = 3
END IF
*
IF (LSAME(JOBU,'V')) THEN
WANTU = 1
ELSE
WANTU = 0
END IF
IF (LSAME(JOBVT,'V')) THEN
WANTVT = 1
ELSE
WANTVT = 0
END IF
*
CALL CHK1MAT(M,3,N,4,IA,JA,DESCA,8,INFO)
IF (WANTU.EQ.1) THEN
CALL CHK1MAT(M,3,SIZE,SIZEPOS,IU,JU,DESCU,13,INFO)
END IF
IF (WANTVT.EQ.1) THEN
CALL CHK1MAT(SIZE,SIZEPOS,N,4,IVT,JVT,DESCVT,17,INFO)
END IF
CALL IGAMX2D(DESCA(CTXT_),'A',' ',1,1,INFO,1,1,1,-1,-1,0)
*
IF (INFO.EQ.0) THEN
*
* Set up pointers into the WORK array.
*
INDD = 2
INDE = INDD + SIZEB + IOFFD
INDD2 = INDE + SIZEB + IOFFE
INDE2 = INDD2 + SIZEB + IOFFD
*
INDTAUQ = INDE2 + SIZEB + IOFFE
INDTAUP = INDTAUQ + SIZEB + JA - 1
INDWORK = INDTAUP + SIZEB + IA - 1
LLWORK = LWORK - INDWORK + 1
*
* Initialize contexts for "column" and "row" process matrices.
*
CALL BLACS_GET(DESCA(CTXT_),10,CONTEXTC)
CALL BLACS_GRIDINIT(CONTEXTC,'R',NPROCS,1)
CALL BLACS_GRIDINFO(CONTEXTC,NPROWC,NPCOLC,MYPROWC,
+ MYPCOLC)
CALL BLACS_GET(DESCA(CTXT_),10,CONTEXTR)
CALL BLACS_GRIDINIT(CONTEXTR,'R',1,NPROCS)
CALL BLACS_GRIDINFO(CONTEXTR,NPROWR,NPCOLR,MYPROWR,
+ MYPCOLR)
*
* Set local dimensions of matrices (this is for MB=NB=1).
*
NRU = NUMROC(M,1,MYPROWC,0,NPROCS)
NCVT = NUMROC(N,1,MYPCOLR,0,NPROCS)
NB = DESCA(NB_)
MB = DESCA(MB_)
MP = NUMROC(M,MB,MYPROW,DESCA(RSRC_),NPROW)
NQ = NUMROC(N,NB,MYPCOL,DESCA(CSRC_),NPCOL)
IF (WANTVT.EQ.1) THEN
SIZEP = NUMROC(SIZE,DESCVT(MB_),MYPROW,DESCVT(RSRC_),
+ NPROW)
ELSE
SIZEP = 0
END IF
IF (WANTU.EQ.1) THEN
SIZEQ = NUMROC(SIZE,DESCU(NB_),MYPCOL,DESCU(CSRC_),
+ NPCOL)
ELSE
SIZEQ = 0
END IF
*
* Transmit MAX(NQ0, MP0).
*
IF (MYPROW.EQ.0 .AND. MYPCOL.EQ.0) THEN
MAXIM = MAX(NQ,MP)
CALL IGEBS2D(DESCA(CTXT_),'All',' ',1,1,MAXIM,1)
ELSE
CALL IGEBR2D(DESCA(CTXT_),'All',' ',1,1,MAXIM,1,0,0)
END IF
*
WPDLANGE = MP
WPDGEBRD = NB* (MP+NQ+1) + NQ
WATOBD = MAX(MAX(WPDLANGE,WPDGEBRD),MAXIM)
*
WDBDSQR = MAX(1,4*SIZE)
WPDORMBRQLN = MAX((NB* (NB-1))/2, (SIZEQ+MP)*NB) + NB*NB
WPDORMBRPRT = MAX((MB* (MB-1))/2, (SIZEP+NQ)*MB) + MB*MB
WBDTOSVD = SIZE* (WANTU*NRU+WANTVT*NCVT) +
+ MAX(WDBDSQR,MAX(WANTU*WPDORMBRQLN,
+ WANTVT*WPDORMBRPRT))
*
* Finally, calculate required workspace.
*
LWMIN = 1 + 6*SIZEB + MAX(WATOBD,WBDTOSVD)
WORK(1) = DBLE(LWMIN)
*
IF (WANTU.NE.1 .AND. .NOT. (LSAME(JOBU,'N'))) THEN
INFO = -1
ELSE IF (WANTVT.NE.1 .AND. .NOT. (LSAME(JOBVT,'N'))) THEN
INFO = -2
ELSE IF (LWORK.LT.LWMIN .AND. LWORK.NE.-1) THEN
INFO = -19
END IF
*
END IF
*
IDUM1(1) = WANTU
IDUM1(2) = WANTVT
IF (LWORK.EQ.-1) THEN
IDUM1(3) = -1
ELSE
IDUM1(3) = 1
END IF
IDUM2(1) = 1
IDUM2(2) = 2
IDUM2(3) = 19
CALL PCHK1MAT(M,3,N,4,IA,JA,DESCA,8,3,IDUM1,IDUM2,INFO)
IF (INFO.EQ.0) THEN
IF (WANTU.EQ.1) THEN
CALL PCHK1MAT(M,3,SIZE,4,IU,JU,DESCU,13,0,IDUM1,IDUM2,
+ INFO)
END IF
IF (WANTVT.EQ.1) THEN
CALL PCHK1MAT(SIZE,3,N,4,IVT,JVT,DESCVT,17,0,IDUM1,
+ IDUM2,INFO)
END IF
END IF
*
END IF
*
IF (INFO.NE.0) THEN
CALL PXERBLA(DESCA(CTXT_),'PDGESVD',-INFO)
RETURN
ELSE IF (LWORK.EQ.-1) THEN
GO TO 40
END IF
*
* Quick return if possible.
*
IF (M.LE.0 .OR. N.LE.0) GO TO 40
*
* Get machine constants.
*
SAFMIN = PDLAMCH(DESCA(CTXT_),'Safe minimum')
EPS = PDLAMCH(DESCA(CTXT_),'Precision')
SMLNUM = SAFMIN/EPS
BIGNUM = ONE/SMLNUM
RMIN = SQRT(SMLNUM)
RMAX = MIN(SQRT(BIGNUM),ONE/SQRT(SQRT(SAFMIN)))
*
* Scale matrix to allowable range, if necessary.
*
ANRM = PDLANGE('1',M,N,A,IA,JA,DESCA,WORK(INDWORK))
IF (ANRM.GT.ZERO .AND. ANRM.LT.RMIN) THEN
ISCALE = 1
SIGMA = RMIN/ANRM
ELSE IF (ANRM.GT.RMAX) THEN
ISCALE = 1
SIGMA = RMAX/ANRM
END IF
*
IF (ISCALE.EQ.1) THEN
CALL PDLASCL('G',ONE,SIGMA,M,N,A,IA,JA,DESCA,INFO)
END IF
*
CALL PDGEBRD(M,N,A,IA,JA,DESCA,WORK(INDD),WORK(INDE),
+ WORK(INDTAUQ),WORK(INDTAUP),WORK(INDWORK),LLWORK,
+ INFO)
*
* Copy D and E to all processes.
* Array D is in local array of dimension:
* LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise.
* Array E is in local array of dimension
* LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
*
IF (M.GE.N) THEN
* Distribute D
CALL PDLARED1D(N+IOFFD,IA,JA,DESCA,WORK(INDD),WORK(INDD2),
+ WORK(INDWORK),LLWORK)
* Distribute E
CALL PDLARED2D(M+IOFFE,IA,JA,DESCA,WORK(INDE),WORK(INDE2),
+ WORK(INDWORK),LLWORK)
ELSE
* Distribute D
CALL PDLARED2D(M+IOFFD,IA,JA,DESCA,WORK(INDD),WORK(INDD2),
+ WORK(INDWORK),LLWORK)
* Distribute E
CALL PDLARED1D(N+IOFFE,IA,JA,DESCA,WORK(INDE),WORK(INDE2),
+ WORK(INDWORK),LLWORK)
END IF
*
* Prepare for calling PDBDSQR.
*
IF (M.GE.N) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
*
INDU = INDWORK
INDV = INDU + SIZE*NRU*WANTU
INDWORK = INDV + SIZE*NCVT*WANTVT
*
LDU = MAX(1,NRU)
LDVT = MAX(1,SIZE)
*
CALL DESCINIT(DESCTU,M,SIZE,1,1,0,0,CONTEXTC,LDU,INFO)
CALL DESCINIT(DESCTVT,SIZE,N,1,1,0,0,CONTEXTR,LDVT,INFO)
*
IF (WANTU.EQ.1) THEN
CALL PDLASET('Full',M,SIZE,ZERO,ONE,WORK(INDU),1,1,DESCTU)
ELSE
NRU = 0
END IF
*
IF (WANTVT.EQ.1) THEN
CALL PDLASET('Full',SIZE,N,ZERO,ONE,WORK(INDV),1,1,DESCTVT)
ELSE
NCVT = 0
END IF
*
CALL DBDSQR(UPLO,SIZE,NCVT,NRU,0,WORK(INDD2+IOFFD),
+ WORK(INDE2+IOFFE),WORK(INDV),SIZE,WORK(INDU),LDU,C,1,
+ WORK(INDWORK),INFO)
*
* Redistribute elements of U and VT in the block-cyclic fashion.
*
IF (WANTU.EQ.1) CALL PDGEMR2D(M,SIZE,WORK(INDU),1,1,DESCTU,U,IU,
+ JU,DESCU,DESCU(CTXT_))
*
IF (WANTVT.EQ.1) CALL PDGEMR2D(SIZE,N,WORK(INDV),1,1,DESCTVT,VT,
+ IVT,JVT,DESCVT,DESCVT(CTXT_))
*
* Set to ZERO "non-square" elements of the larger matrices U, VT.
*
IF (M.GT.N .AND. WANTU.EQ.1) THEN
CALL PDLASET('Full',M-SIZE,SIZE,ZERO,ZERO,U,IA+SIZE,JU,DESCU)
ELSE IF (N.GT.M .AND. WANTVT.EQ.1) THEN
CALL PDLASET('Full',SIZE,N-SIZE,ZERO,ZERO,VT,IVT,JVT+SIZE,
+ DESCVT)
END IF
*
* Multiply Householder rotations from bidiagonalized matrix.
*
IF (WANTU.EQ.1) CALL PDORMBR('Q','L','N',M,SIZE,N,A,IA,JA,DESCA,
+ WORK(INDTAUQ),U,IU,JU,DESCU,
+ WORK(INDWORK),LLWORK,INFO)
*
IF (WANTVT.EQ.1) CALL PDORMBR('P','R','T',SIZE,N,M,A,IA,JA,DESCA,
+ WORK(INDTAUP),VT,IVT,JVT,DESCVT,
+ WORK(INDWORK),LLWORK,INFO)
*
* Copy singular values into output array S.
*
DO 10 I = 1,SIZE
S(I) = WORK(INDD2+IOFFD+I-1)
10 CONTINUE
*
* If matrix was scaled, then rescale singular values appropriately.
*
IF (ISCALE.EQ.1) THEN
CALL DSCAL(SIZE,ONE/SIGMA,S,1)
END IF
*
* Compare every ith eigenvalue, or all if there are only a few,
* across the process grid to check for heterogeneity.
*
IF (SIZE.LE.ITHVAL) THEN
J = SIZE
K = 1
ELSE
J = SIZE/ITHVAL
K = ITHVAL
END IF
*
DO 20 I = 1,J
WORK(I+INDE) = S((I-1)*K+1)
WORK(I+INDD2) = S((I-1)*K+1)
20 CONTINUE
*
CALL DGAMN2D(DESCA(CTXT_),'a',' ',J,1,WORK(1+INDE),J,1,1,-1,-1,0)
CALL DGAMX2D(DESCA(CTXT_),'a',' ',J,1,WORK(1+INDD2),J,1,1,-1,-1,0)
*
DO 30 I = 1,J
IF ((WORK(I+INDE)-WORK(I+INDD2)).NE.ZERO) THEN
INFO = SIZE + 1
END IF
30 CONTINUE
*
40 CONTINUE
*
CALL BLACS_GRIDEXIT(CONTEXTC)
CALL BLACS_GRIDEXIT(CONTEXTR)
*
* End of PDGESVD
*
RETURN
END
|