1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
SUBROUTINE PDLAED3( ICTXT, K, N, NB, D, DROW, DCOL, RHO, DLAMDA,
$ W, Z, U, LDU, BUF, INDX, INDCOL, INDROW,
$ INDXR, INDXC, CTOT, NPCOL, INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* December 31, 1998
*
* .. Scalar Arguments ..
INTEGER DCOL, DROW, ICTXT, INFO, K, LDU, N, NB, NPCOL
DOUBLE PRECISION RHO
* ..
* .. Array Arguments ..
INTEGER CTOT( 0: NPCOL-1, 4 ), INDCOL( * ),
$ INDROW( * ), INDX( * ), INDXC( * ), INDXR( * )
DOUBLE PRECISION BUF( * ), D( * ), DLAMDA( * ), U( LDU, * ),
$ W( * ), Z( * )
* ..
*
* Purpose
* =======
*
* PDLAED3 finds the roots of the secular equation, as defined by the
* values in D, W, and RHO, between 1 and K. It makes the
* appropriate calls to SLAED4
*
* This code makes very mild assumptions about floating point
* arithmetic. It will work on machines with a guard digit in
* add/subtract, or on those binary machines without guard digits
* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
* It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none.
*
* Arguments
* =========
*
* ICTXT (global input) INTEGER
* The BLACS context handle, indicating the global context of
* the operation on the matrix. The context itself is global.
*
* K (output) INTEGER
* The number of non-deflated eigenvalues, and the order of the
* related secular equation. 0 <= K <=N.
*
* N (input) INTEGER
* The dimension of the symmetric tridiagonal matrix. N >= 0.
*
* NB (global input) INTEGER
* The blocking factor used to distribute the columns of the
* matrix. NB >= 1.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, D contains the eigenvalues of the two submatrices to
* be combined.
* On exit, D contains the trailing (N-K) updated eigenvalues
* (those which were deflated) sorted into increasing order.
*
* DROW (global input) INTEGER
* The process row over which the first row of the matrix D is
* distributed. 0 <= DROW < NPROW.
*
* DCOL (global input) INTEGER
* The process column over which the first column of the
* matrix D is distributed. 0 <= DCOL < NPCOL.
*
* RHO (global input/output) DOUBLE PRECISION
* On entry, the off-diagonal element associated with the rank-1
* cut which originally split the two submatrices which are now
* being recombined.
* On exit, RHO has been modified to the value required by
* PDLAED3.
*
* DLAMDA (global output) DOUBLE PRECISION array, dimension (N)
* A copy of the first K eigenvalues which will be used by
* DLAED4 to form the secular equation.
*
* W (global output) DOUBLE PRECISION array, dimension (N)
* The first k values of the final deflation-altered z-vector
* which will be passed to DLAED4.
*
* Z (global input) DOUBLE PRECISION array, dimension (N)
* On entry, Z contains the updating vector (the last
* row of the first sub-eigenvector matrix and the first row of
* the second sub-eigenvector matrix).
* On exit, the contents of Z have been destroyed by the updating
* process.
*
* U (global output) DOUBLE PRECISION array
* global dimension (N, N), local dimension (LDU, NQ).
* (See PDLAED0 for definition of NQ.)
* Q contains the orthonormal eigenvectors of the symmetric
* tridiagonal matrix.
*
* LDU (input) INTEGER
* The leading dimension of the array U.
*
* BUF (workspace) DOUBLE PRECISION array, dimension 3*N
*
*
* INDX (workspace) INTEGER array, dimension (N)
* The permutation used to sort the contents of DLAMDA into
* ascending order.
*
* INDCOL (workspace) INTEGER array, dimension (N)
*
*
* INDROW (workspace) INTEGER array, dimension (N)
*
*
* INDXR (workspace) INTEGER array, dimension (N)
*
*
* INDXC (workspace) INTEGER array, dimension (N)
*
* CTOT (workspace) INTEGER array, dimension( NPCOL, 4)
*
* NPCOL (global input) INTEGER
* The total number of columns over which the distributed
* submatrix is distributed.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: The algorithm failed to compute the ith eigenvalue.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER COL, GI, I, IINFO, IIU, IPD, IU, J, JJU, JU,
$ KK, KL, KLC, KLR, MYCOL, MYKL, MYKLR, MYROW,
$ NPROW, PDC, PDR, ROW
DOUBLE PRECISION AUX, TEMP
* ..
* .. External Functions ..
INTEGER INDXG2L
DOUBLE PRECISION DLAMC3, DNRM2
EXTERNAL INDXG2L, DLAMC3, DNRM2
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DCOPY, DGEBR2D, DGEBS2D,
$ DGERV2D, DGESD2D, DLAED4
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
* Quick return if possible
*
IF( K.EQ.0 )
$ RETURN
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
ROW = DROW
COL = DCOL
DO 20 I = 1, N, NB
DO 10 J = 0, NB - 1
IF( I+J.LE.N ) THEN
INDROW( I+J ) = ROW
INDCOL( I+J ) = COL
END IF
10 CONTINUE
ROW = MOD( ROW+1, NPROW )
COL = MOD( COL+1, NPCOL )
20 CONTINUE
*
MYKL = CTOT( MYCOL, 1 ) + CTOT( MYCOL, 2 ) + CTOT( MYCOL, 3 )
KLR = MYKL / NPROW
IF( MYROW.EQ.DROW ) THEN
MYKLR = KLR + MOD( MYKL, NPROW )
ELSE
MYKLR = KLR
END IF
PDC = 1
COL = DCOL
30 CONTINUE
IF( MYCOL.NE.COL ) THEN
PDC = PDC + CTOT( COL, 1 ) + CTOT( COL, 2 ) + CTOT( COL, 3 )
COL = MOD( COL+1, NPCOL )
GO TO 30
END IF
PDR = PDC
KL = KLR + MOD( MYKL, NPROW )
ROW = DROW
40 CONTINUE
IF( MYROW.NE.ROW ) THEN
PDR = PDR + KL
KL = KLR
ROW = MOD( ROW+1, NPROW )
GO TO 40
END IF
*
DO 50 I = 1, K
DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
Z( I ) = ONE
50 CONTINUE
IF( MYKLR.GT.0 ) THEN
KK = PDR
DO 80 I = 1, MYKLR
CALL DLAED4( K, KK, DLAMDA, W, BUF, RHO, BUF( K+I ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = KK
END IF
*
* ..Compute part of z
*
DO 60 J = 1, KK - 1
Z( J ) = Z( J )*( BUF( J ) /
$ ( DLAMDA( J )-DLAMDA( KK ) ) )
60 CONTINUE
Z( KK ) = Z( KK )*BUF( KK )
DO 70 J = KK + 1, K
Z( J ) = Z( J )*( BUF( J ) /
$ ( DLAMDA( J )-DLAMDA( KK ) ) )
70 CONTINUE
KK = KK + 1
80 CONTINUE
*
IF( MYROW.NE.DROW ) THEN
CALL DCOPY( K, Z, 1, BUF, 1 )
CALL DGESD2D( ICTXT, K+MYKLR, 1, BUF, K+MYKLR, DROW, MYCOL )
ELSE
IPD = 2*K + 1
CALL DCOPY( MYKLR, BUF( K+1 ), 1, BUF( IPD ), 1 )
IF( KLR.GT.0 ) THEN
IPD = MYKLR + IPD
ROW = MOD( DROW+1, NPROW )
DO 100 I = 1, NPROW - 1
CALL DGERV2D( ICTXT, K+KLR, 1, BUF, K+KLR, ROW,
$ MYCOL )
CALL DCOPY( KLR, BUF( K+1 ), 1, BUF( IPD ), 1 )
DO 90 J = 1, K
Z( J ) = Z( J )*BUF( J )
90 CONTINUE
IPD = IPD + KLR
ROW = MOD( ROW+1, NPROW )
100 CONTINUE
END IF
END IF
END IF
*
IF( MYROW.EQ.DROW ) THEN
IF( MYCOL.NE.DCOL .AND. MYKL.NE.0 ) THEN
CALL DCOPY( K, Z, 1, BUF, 1 )
CALL DCOPY( MYKL, BUF( 2*K+1 ), 1, BUF( K+1 ), 1 )
CALL DGESD2D( ICTXT, K+MYKL, 1, BUF, K+MYKL, MYROW, DCOL )
ELSE IF( MYCOL.EQ.DCOL ) THEN
IPD = 2*K + 1
COL = DCOL
KL = MYKL
DO 120 I = 1, NPCOL - 1
IPD = IPD + KL
COL = MOD( COL+1, NPCOL )
KL = CTOT( COL, 1 ) + CTOT( COL, 2 ) + CTOT( COL, 3 )
IF( KL.NE.0 ) THEN
CALL DGERV2D( ICTXT, K+KL, 1, BUF, K+KL, MYROW, COL )
CALL DCOPY( KL, BUF( K+1 ), 1, BUF( IPD ), 1 )
DO 110 J = 1, K
Z( J ) = Z( J )*BUF( J )
110 CONTINUE
END IF
120 CONTINUE
DO 130 I = 1, K
Z( I ) = SIGN( SQRT( -Z( I ) ), W( I ) )
130 CONTINUE
*
END IF
END IF
*
* Diffusion
*
IF( MYROW.EQ.DROW .AND. MYCOL.EQ.DCOL ) THEN
CALL DCOPY( K, Z, 1, BUF, 1 )
CALL DCOPY( K, BUF( 2*K+1 ), 1, BUF( K+1 ), 1 )
CALL DGEBS2D( ICTXT, 'All', ' ', 2*K, 1, BUF, 2*K )
ELSE
CALL DGEBR2D( ICTXT, 'All', ' ', 2*K, 1, BUF, 2*K, DROW, DCOL )
CALL DCOPY( K, BUF, 1, Z, 1 )
END IF
*
* Copy of D at the good place
*
KLC = 0
KLR = 0
DO 140 I = 1, K
GI = INDX( I )
D( GI ) = BUF( K+I )
COL = INDCOL( GI )
ROW = INDROW( GI )
IF( COL.EQ.MYCOL ) THEN
KLC = KLC + 1
INDXC( KLC ) = I
END IF
IF( ROW.EQ.MYROW ) THEN
KLR = KLR + 1
INDXR( KLR ) = I
END IF
140 CONTINUE
*
* Compute eigenvectors of the modified rank-1 modification.
*
IF( MYKL.NE.0 ) THEN
DO 180 J = 1, MYKL
KK = INDXC( J )
JU = INDX( KK )
JJU = INDXG2L( JU, NB, J, J, NPCOL )
CALL DLAED4( K, KK, DLAMDA, W, BUF, RHO, AUX, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = KK
END IF
IF( K.EQ.1 .OR. K.EQ.2 ) THEN
DO 150 I = 1, KLR
KK = INDXR( I )
IU = INDX( KK )
IIU = INDXG2L( IU, NB, J, J, NPROW )
U( IIU, JJU ) = BUF( KK )
150 CONTINUE
GO TO 180
END IF
*
DO 160 I = 1, K
BUF( I ) = Z( I ) / BUF( I )
160 CONTINUE
TEMP = DNRM2( K, BUF, 1 )
DO 170 I = 1, KLR
KK = INDXR( I )
IU = INDX( KK )
IIU = INDXG2L( IU, NB, J, J, NPROW )
U( IIU, JJU ) = BUF( KK ) / TEMP
170 CONTINUE
*
180 CONTINUE
END IF
*
190 CONTINUE
*
RETURN
*
* End of PDLAED3
*
END
|