File: pdlahqr.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (2077 lines) | stat: -rw-r--r-- 91,197 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
      SUBROUTINE PDLAHQR( WANTT, WANTZ, N, ILO, IHI, A, DESCA, WR, WI,
     $                    ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK,
     $                    ILWORK, INFO )
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      LOGICAL            WANTT, WANTZ
      INTEGER            IHI, IHIZ, ILO, ILOZ, ILWORK, INFO, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCZ( * ), IWORK( * )
      DOUBLE PRECISION   A( * ), WI( * ), WORK( * ), WR( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PDLAHQR is an auxiliary routine used to find the Schur decomposition
*    and or eigenvalues of a matrix already in Hessenberg form from
*    cols ILO to IHI.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  WANTT   (global input) LOGICAL
*          = .TRUE. : the full Schur form T is required;
*          = .FALSE.: only eigenvalues are required.
*
*  WANTZ   (global input) LOGICAL
*          = .TRUE. : the matrix of Schur vectors Z is required;
*          = .FALSE.: Schur vectors are not required.
*
*  N       (global input) INTEGER
*          The order of the Hessenberg matrix A (and Z if WANTZ).
*          N >= 0.
*
*  ILO     (global input) INTEGER
*  IHI     (global input) INTEGER
*          It is assumed that A is already upper quasi-triangular in
*          rows and columns IHI+1:N, and that A(ILO,ILO-1) = 0 (unless
*          ILO = 1). PDLAHQR works primarily with the Hessenberg
*          submatrix in rows and columns ILO to IHI, but applies
*          transformations to all of H if WANTT is .TRUE..
*          1 <= ILO <= max(1,IHI); IHI <= N.
*
*  A       (global input/output) DOUBLE PRECISION array, dimension
*          (DESCA(LLD_),*)
*          On entry, the upper Hessenberg matrix A.
*          On exit, if WANTT is .TRUE., A is upper quasi-triangular in
*          rows and columns ILO:IHI, with any 2-by-2 or larger diagonal
*          blocks not yet in standard form. If WANTT is .FALSE., the
*          contents of A are unspecified on exit.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  WR      (global replicated output) DOUBLE PRECISION array,
*                                                         dimension (N)
*  WI      (global replicated output) DOUBLE PRECISION array,
*                                                         dimension (N)
*          The real and imaginary parts, respectively, of the computed
*          eigenvalues ILO to IHI are stored in the corresponding
*          elements of WR and WI. If two eigenvalues are computed as a
*          complex conjugate pair, they are stored in consecutive
*          elements of WR and WI, say the i-th and (i+1)th, with
*          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
*          eigenvalues are stored in the same order as on the diagonal
*          of the Schur form returned in A.  A may be returned with
*          larger diagonal blocks until the next release.
*
*  ILOZ    (global input) INTEGER
*  IHIZ    (global input) INTEGER
*          Specify the rows of Z to which transformations must be
*          applied if WANTZ is .TRUE..
*          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
*  Z       (global input/output) DOUBLE PRECISION array.
*          If WANTZ is .TRUE., on entry Z must contain the current
*          matrix Z of transformations accumulated by PDHSEQR, and on
*          exit Z has been updated; transformations are applied only to
*          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
*          If WANTZ is .FALSE., Z is not referenced.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  WORK    (local output) DOUBLE PRECISION array of size LWORK
*
*  LWORK   (local input) INTEGER
*          WORK(LWORK) is a local array and LWORK is assumed big enough
*          so that LWORK >= 3*N +
*                MAX( 2*MAX(DESCZ(LLD_),DESCA(LLD_)) + 2*LOCc(N),
*                     7*Ceil(N/HBL)/LCM(NPROW,NPCOL)) )
*
*  IWORK   (global and local input) INTEGER array of size ILWORK
*
*  ILWORK  (local input) INTEGER
*          This holds the some of the IBLK integer arrays.  This is held
*          as a place holder for the next release.
*
*  INFO    (global output) INTEGER
*          < 0: parameter number -INFO incorrect or inconsistent
*          = 0: successful exit
*          > 0: PDLAHQR failed to compute all the eigenvalues ILO to IHI
*               in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
*               elements i+1:ihi of WR and WI contain those eigenvalues
*               which have been successfully computed.
*
*  Logic:
*       This algorithm is very similar to _LAHQR.  Unlike _LAHQR,
*       instead of sending one double shift through the largest
*       unreduced submatrix, this algorithm sends multiple double shifts
*       and spaces them apart so that there can be parallelism across
*       several processor row/columns.  Another critical difference is
*       that this algorithm aggregrates multiple transforms together in
*       order to apply them in a block fashion.
*
*  Important Local Variables:
*       IBLK = The maximum number of bulges that can be computed.
*           Currently fixed.  Future releases this won't be fixed.
*       HBL  = The square block size (HBL=DESCA(MB_)=DESCA(NB_))
*       ROTN = The number of transforms to block together
*       NBULGE = The number of bulges that will be attempted on the
*           current submatrix.
*       IBULGE = The current number of bulges started.
*       K1(*),K2(*) = The current bulge loops from K1(*) to K2(*).
*
*  Subroutines:
*       This routine calls:
*           PDLACONSB   -> To determine where to start each iteration
*           PDLAWIL   -> Given the shift, get the transformation
*           DLASORTE   -> Pair up eigenvalues so that reals are paired.
*           PDLACP3   -> Parallel array to local replicated array copy &
*                        back.
*           DLAREF   -> Row/column reflector applier.  Core routine
*                        here.
*           PDLASMSUB   -> Finds negligible subdiagonal elements.
*
*  Current Notes and/or Restrictions:
*       1.) This code requires the distributed block size to be square
*           and at least six (6); unlike simpler codes like LU, this
*           algorithm is extremely sensitive to block size.  Unwise
*           choices of too small a block size can lead to bad
*           performance.
*       2.) This code requires A and Z to be distributed identically
*           and have identical contxts.
*       3.) This release currently does not have a routine for
*           resolving the Schur blocks into regular 2x2 form after
*           this code is completed.  Because of this, a significant
*           performance impact is required while the deflation is done
*           by sometimes a single column of processors.
*       4.) This code does not currently block the initial transforms
*           so that none of the rows or columns for any bulge are
*           completed until all are started.  To offset pipeline
*           start-up it is recommended that at least 2*LCM(NPROW,NPCOL)
*           bulges are used (if possible)
*       5.) The maximum number of bulges currently supported is fixed at
*           32.  In future versions this will be limited only by the
*           incoming WORK array.
*       6.) The matrix A must be in upper Hessenberg form.  If elements
*           below the subdiagonal are nonzero, the resulting transforms
*           may be nonsimilar.  This is also true with the LAPACK
*           routine.
*       7.) For this release, it is assumed RSRC_=CSRC_=0
*       8.) Currently, all the eigenvalues are distributed to all the
*           nodes.  Future releases will probably distribute the
*           eigenvalues by the column partitioning.
*       9.) The internals of this routine are subject to change.
*
*  Implemented by:  G. Henry, November 17, 1996
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, ONE, HALF
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
      DOUBLE PRECISION   CONST
      PARAMETER          ( CONST = 1.50D+0 )
      INTEGER            IBLK
      PARAMETER          ( IBLK = 32 )
*     ..
*     .. Local Scalars ..
      INTEGER            CONTXT, DOWN, HBL, I, I1, I2, IAFIRST, IBULGE,
     $                   ICBUF, ICOL, ICOL1, ICOL2, IDIA, IERR, II,
     $                   IRBUF, IROW, IROW1, IROW2, ISPEC, ISTART,
     $                   ISTARTCOL, ISTARTROW, ISTOP, ISUB, ISUP,
     $                   ITERMAX, ITMP1, ITMP2, ITN, ITS, J, JAFIRST,
     $                   JBLK, JJ, K, KI, L, LCMRC, LDA, LDZ, LEFT,
     $                   LIHIH, LIHIZ, LILOH, LILOZ, LOCALI1, LOCALI2,
     $                   LOCALK, LOCALM, M, MODKM1, MYCOL, MYROW,
     $                   NBULGE, NH, NODE, NPCOL, NPROW, NR, NUM, NZ,
     $                   RIGHT, ROTN, UP, VECSIDX
      DOUBLE PRECISION   AVE, DISC, H00, H10, H11, H12, H21, H22, H33,
     $                   H43H34, H44, OVFL, S, SMLNUM, SUM, T1, T1COPY,
     $                   T2, T3, ULP, UNFL, V1SAVE, V2, V2SAVE, V3,
     $                   V3SAVE, CS, SN
*     ..
*     .. Local Arrays ..
      INTEGER            ICURCOL( IBLK ), ICURROW( IBLK ), K1( IBLK ),
     $                   K2( IBLK ), KCOL( IBLK ), KP2COL( IBLK ),
     $                   KP2ROW( IBLK ), KROW( IBLK ), LOCALK2( IBLK )
      DOUBLE PRECISION   S1( 2*IBLK, 2*IBLK ), SMALLA( 6, 6, IBLK ),
     $                   VCOPY( 3 )
*     ..
*     .. External Functions ..
      INTEGER            ILCM, NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           ILCM, NUMROC, PDLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DCOPY, DGEBR2D, DGEBS2D,
     $                   DGERV2D, DGESD2D, DGSUM2D, DLAHQR, DLAREF,
     $                   DLARFG, DLASORTE, IGAMN2D, INFOG1L, INFOG2L,
     $                   PDLABAD, PDLACONSB, PDLACP3, PDLASMSUB,
     $                   PDLAWIL, PXERBLA, DLANV2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
      ITERMAX = 30*( IHI-ILO+1 )
*     ITERMAX = 0
      IF( N.EQ.0 )
     $   RETURN
*
*     NODE (IAFIRST,JAFIRST) OWNS A(1,1)
*
      HBL = DESCA( MB_ )
      CONTXT = DESCA( CTXT_ )
      LDA = DESCA( LLD_ )
      IAFIRST = DESCA( RSRC_ )
      JAFIRST = DESCA( CSRC_ )
      LDZ = DESCZ( LLD_ )
      CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
      NODE = MYROW*NPCOL + MYCOL
      NUM = NPROW*NPCOL
      LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
      RIGHT = MOD( MYCOL+1, NPCOL )
      UP = MOD( MYROW+NPROW-1, NPROW )
      DOWN = MOD( MYROW+1, NPROW )
      LCMRC = ILCM( NPROW, NPCOL )
*
*     Determine the number of columns we have so we can check workspace
*
      LOCALK = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
      JJ = N / HBL
      IF( JJ*HBL.LT.N )
     $   JJ = JJ + 1
      JJ = 7*JJ / LCMRC
      IF( LWORK.LT.3*N+MAX( 2*MAX( LDA, LDZ )+2*LOCALK, JJ ) ) THEN
         INFO = -15
      END IF
      IF( DESCZ( CTXT_ ).NE.DESCA( CTXT_ ) ) THEN
         INFO = -( 1300+CTXT_ )
      END IF
      IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
         INFO = -( 700+NB_ )
      END IF
      IF( DESCZ( MB_ ).NE.DESCZ( NB_ ) ) THEN
         INFO = -( 1300+NB_ )
      END IF
      IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
         INFO = -( 1300+MB_ )
      END IF
      IF( ( DESCA( RSRC_ ).NE.0 ) .OR. ( DESCA( CSRC_ ).NE.0 ) ) THEN
         INFO = -( 700+RSRC_ )
      END IF
      IF( ( DESCZ( RSRC_ ).NE.0 ) .OR. ( DESCZ( CSRC_ ).NE.0 ) ) THEN
         INFO = -( 1300+RSRC_ )
      END IF
      IF( ( ILO.GT.N ) .OR. ( ILO.LT.1 ) ) THEN
         INFO = -4
      END IF
      IF( ( IHI.GT.N ) .OR. ( IHI.LT.1 ) ) THEN
         INFO = -5
      END IF
      IF( HBL.LT.5 ) THEN
         INFO = -( 700+MB_ )
      END IF
      CALL IGAMN2D( CONTXT, 'ALL', ' ', 1, 1, INFO, 1, ITMP1, ITMP2, -1,
     $              -1, -1 )
      IF( INFO.LT.0 ) THEN
         CALL PXERBLA( CONTXT, 'PDLAHQR', -INFO )
         RETURN
      END IF
*
*     Set work array indices
*
      VECSIDX = 0
      IDIA = 3*N
      ISUB = 3*N
      ISUP = 3*N
      IRBUF = 3*N
      ICBUF = 3*N
*
*     Find a value for ROTN
*
      ROTN = HBL / 3
      ROTN = MAX( ROTN, HBL-2 )
      ROTN = MIN( ROTN, 1 )
*
      IF( ILO.EQ.IHI ) THEN
         CALL INFOG2L( ILO, ILO, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                 IROW, ICOL, II, JJ )
         IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
            WR( ILO ) = A( ( ICOL-1 )*LDA+IROW )
         ELSE
            WR( ILO ) = ZERO
         END IF
         WI( ILO ) = ZERO
         RETURN
      END IF
*
      NH = IHI - ILO + 1
      NZ = IHIZ - ILOZ + 1
*
      CALL INFOG1L( ILOZ, HBL, NPROW, MYROW, 0, LILOZ, LIHIZ )
      LIHIZ = NUMROC( IHIZ, HBL, MYROW, 0, NPROW )
*
*     Set machine-dependent constants for the stopping criterion.
*     If NORM(H) <= SQRT(OVFL), overflow should not occur.
*
      UNFL = PDLAMCH( CONTXT, 'SAFE MINIMUM' )
      OVFL = ONE / UNFL
      CALL PDLABAD( CONTXT, UNFL, OVFL )
      ULP = PDLAMCH( CONTXT, 'PRECISION' )
      SMLNUM = UNFL*( NH / ULP )
*
*     I1 and I2 are the indices of the first row and last column of H
*     to which transformations must be applied. If eigenvalues only are
*     being computed, I1 and I2 are set inside the main loop.
*
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      END IF
*
*     ITN is the total number of QR iterations allowed.
*
      ITN = ITERMAX
*
*     The main loop begins here. I is the loop index and decreases from
*     IHI to ILO in steps of our schur block size (<=2*IBLK). Each
*     iteration of the loop works  with the active submatrix in rows
*     and columns L to I.   Eigenvalues I+1 to IHI have already
*     converged. Either L = ILO or the global A(L,L-1) is negligible
*     so that the matrix splits.
*
      I = IHI
   10 CONTINUE
      L = ILO
      IF( I.LT.ILO )
     $   GO TO 450
*
*     Perform QR iterations on rows and columns ILO to I until a
*     submatrix of order 1 or 2 splits off at the bottom because a
*     subdiagonal element has become negligible.
*
      DO 420 ITS = 0, ITN
*
*        Look for a single small subdiagonal element.
*
         CALL PDLASMSUB( A, DESCA, I, L, K, SMLNUM, WORK( IRBUF+1 ),
     $                   LWORK-IRBUF )
         L = K
*
         IF( L.GT.ILO ) THEN
*
*           H(L,L-1) is negligible
*
            CALL INFOG2L( L, L-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                    IROW, ICOL, ITMP1, ITMP2 )
            IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
               A( ( ICOL-1 )*LDA+IROW ) = ZERO
            END IF
            WORK( ISUB+L-1 ) = ZERO
         END IF
*
*        Exit from loop if a submatrix of order 1 or 2 has split off.
*
         M = L - 10
*        IF ( L .GE. I - (2*IBLK-1) )
*         IF ( L .GE. I - MAX(2*IBLK-1,HBL) )
         IF( L.GE.I-1 )
     $      GO TO 430
*
*        Now the active submatrix is in rows and columns L to I. If
*        eigenvalues only are being computed, only the active submatrix
*        need be transformed.
*
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
*
*        Copy submatrix of size 2*JBLK and prepare to do generalized
*           Wilkinson shift or an exceptional shift
*
         JBLK = MIN( IBLK, ( ( I-L+1 ) / 2 )-1 )
         IF( JBLK.GT.LCMRC ) THEN
*
*           Make sure it's divisible by LCM (we want even workloads!)
*
            JBLK = JBLK - MOD( JBLK, LCMRC )
         END IF
         JBLK = MIN( JBLK, 2*LCMRC )
         JBLK = MAX( JBLK, 1 )
*
         CALL PDLACP3( 2*JBLK, I-2*JBLK+1, A, DESCA, S1, 2*IBLK, -1, -1,
     $                 0 )
         IF( ITS.EQ.20 .OR. ITS.EQ.40 ) THEN
*
*           Exceptional shift.
*
            DO 20 II = 2*JBLK, 2, -1
               S1( II, II ) = CONST*( ABS( S1( II, II ) )+
     $                        ABS( S1( II, II-1 ) ) )
               S1( II, II-1 ) = ZERO
               S1( II-1, II ) = ZERO
   20       CONTINUE
            S1( 1, 1 ) = CONST*ABS( S1( 1, 1 ) )
         ELSE
            CALL DLAHQR( .FALSE., .FALSE., 2*JBLK, 1, 2*JBLK, S1,
     $                   2*IBLK, WORK( IRBUF+1 ), WORK( ICBUF+1 ), 1,
     $                   2*JBLK, Z, LDZ, IERR )
*
*           Prepare to use Wilkinson's double shift
*
            H44 = S1( 2*JBLK, 2*JBLK )
            H33 = S1( 2*JBLK-1, 2*JBLK-1 )
            H43H34 = S1( 2*JBLK-1, 2*JBLK )*S1( 2*JBLK, 2*JBLK-1 )
            IF( ( JBLK.GT.1 ) .AND. ( ITS.GT.30 ) ) THEN
               S = S1( 2*JBLK-1, 2*JBLK-2 )
               DISC = ( H33-H44 )*HALF
               DISC = DISC*DISC + H43H34
               IF( DISC.GT.ZERO ) THEN
*
*                 Real roots: Use Wilkinson's shift twice
*
                  DISC = SQRT( DISC )
                  AVE = HALF*( H33+H44 )
                  IF( ABS( H33 )-ABS( H44 ).GT.ZERO ) THEN
                     H33 = H33*H44 - H43H34
                     H44 = H33 / ( SIGN( DISC, AVE )+AVE )
                  ELSE
                     H44 = SIGN( DISC, AVE ) + AVE
                  END IF
                  H33 = H44
                  H43H34 = ZERO
               END IF
            END IF
         END IF
*
*        Look for two consecutive small subdiagonal elements:
*           PDLACONSB is the routine that does this.
*
c         CALL PDLACONSB( A, DESCA, I, L, M, H44, H33, H43H34,
c     $                   WORK( IRBUF+1 ), LWORK-IRBUF )
*
*        Skip small submatrices
*
*        IF ( M .GE. I - 5 )
*    $      GO TO 80
*
*        In principle PDLACONSB needs to check all shifts to decide
*        whether two consecutive small subdiagonal entries are suitable
*        as the starting position of the bulge chasing phase. It can be
*        dangerous to check the first pair of shifts only. Moreover it
*        is quite rare to obtain an M which is much larger than L. This
*        process is a bit expensive compared with the benefit.
*        Therefore it is sensible to abandon this routine. Total amount
*        of communications is saved in average.
*
         M = L
*        Double-shift QR step
*
*        NBULGE is the number of bulges that will be attempted
*
         ISTOP = MIN( M+ROTN-MOD( M, ROTN ), I-2 )
         ISTOP = MIN( ISTOP, M+HBL-3-MOD( M-1, HBL ) )
         ISTOP = MIN( ISTOP, I2-2 )
         ISTOP = MAX( ISTOP, M )
         NBULGE = ( I-1-ISTOP ) / HBL
*
*        Do not exceed maximum determined.
*
         NBULGE = MIN( NBULGE, JBLK )
         IF( NBULGE.GT.LCMRC ) THEN
*
*           Make sure it's divisible by LCM (we want even workloads!)
*
            NBULGE = NBULGE - MOD( NBULGE, LCMRC )
         END IF
         NBULGE = MAX( NBULGE, 1 )
*
         IF( ( ITS.NE.20 ) .AND. ( ITS.NE.40 ) .AND. ( NBULGE.GT.1 ) )
     $        THEN
*
*           sort the eigenpairs so that they are in twos for double
*           shifts.  only call if several need sorting
*
            CALL DLASORTE( S1( 2*( JBLK-NBULGE )+1,
     $                     2*( JBLK-NBULGE )+1 ), 2*IBLK, 2*NBULGE,
     $                     WORK( IRBUF+1 ), IERR )
         END IF
*
*        IBULGE is the number of bulges going so far
*
         IBULGE = 1
*
*        "A" row defs : main row transforms from LOCALK to LOCALI2
*
         CALL INFOG1L( M, HBL, NPCOL, MYCOL, 0, ITMP1, LOCALK )
         LOCALK = NUMROC( N, HBL, MYCOL, 0, NPCOL )
         CALL INFOG1L( 1, HBL, NPCOL, MYCOL, 0, ICOL1, LOCALI2 )
         LOCALI2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
*
*        "A" col defs : main col transforms from LOCALI1 to LOCALM
*
         CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, LOCALI1, ICOL1 )
         ICOL1 = NUMROC( N, HBL, MYROW, 0, NPROW )
         CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, LOCALM, ICOL1 )
         ICOL1 = NUMROC( MIN( M+3, I ), HBL, MYROW, 0, NPROW )
*
*        Which row & column will start the bulges
*
         ISTARTROW = MOD( ( M+1 ) / HBL, NPROW ) + IAFIRST
         ISTARTCOL = MOD( ( M+1 ) / HBL, NPCOL ) + JAFIRST
*
         CALL INFOG1L( M, HBL, NPROW, MYROW, 0, II, ITMP2 )
         ITMP2 = NUMROC( N, HBL, MYROW, 0, NPROW )
         CALL INFOG1L( M, HBL, NPCOL, MYCOL, 0, JJ, ITMP2 )
         ITMP2 = NUMROC( N, HBL, MYCOL, 0, NPCOL )
         CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, ISTOP, KP2ROW( 1 ) )
         KP2ROW( 1 ) = NUMROC( M+2, HBL, MYROW, 0, NPROW )
         CALL INFOG1L( 1, HBL, NPCOL, MYCOL, 0, ISTOP, KP2COL( 1 ) )
         KP2COL( 1 ) = NUMROC( M+2, HBL, MYCOL, 0, NPCOL )
*
*        Set all values for bulges.  All bulges are stored in
*          intermediate steps as loops over KI.  Their current "task"
*          over the global M to I-1 values is always K1(KI) to K2(KI).
*          However, because there are many bulges, K1(KI) & K2(KI) might
*          go past that range while later bulges (KI+1,KI+2,etc..) are
*          finishing up.
*
*        Rules:
*              If MOD(K1(KI)-1,HBL) < HBL-2 then MOD(K2(KI)-1,HBL)<HBL-2
*              If MOD(K1(KI)-1,HBL) = HBL-2 then MOD(K2(KI)-1,HBL)=HBL-2
*              If MOD(K1(KI)-1,HBL) = HBL-1 then MOD(K2(KI)-1,HBL)=HBL-1
*              K2(KI)-K1(KI) <= ROTN
*
*        We first hit a border when MOD(K1(KI)-1,HBL)=HBL-2 and we hit
*        it again when MOD(K1(KI)-1,HBL)=HBL-1.
*
         DO 30 KI = 1, NBULGE
            K1( KI ) = M
            ISTOP = MIN( M+ROTN-MOD( M, ROTN ), I-2 )
            ISTOP = MIN( ISTOP, M+HBL-3-MOD( M-1, HBL ) )
            ISTOP = MIN( ISTOP, I2-2 )
            ISTOP = MAX( ISTOP, M )
            K2( KI ) = ISTOP
            ICURROW( KI ) = ISTARTROW
            ICURCOL( KI ) = ISTARTCOL
            LOCALK2( KI ) = ITMP1
            KROW( KI ) = II
            KCOL( KI ) = JJ
            IF( KI.GT.1 )
     $         KP2ROW( KI ) = KP2ROW( 1 )
            IF( KI.GT.1 )
     $         KP2COL( KI ) = KP2COL( 1 )
   30    CONTINUE
*
*        Get first transform on node who owns M+2,M+2
*
         DO 31 ITMP1 = 1, 3
            VCOPY(ITMP1) = ZERO
   31    CONTINUE
         ITMP1 = ISTARTROW
         ITMP2 = ISTARTCOL
         CALL PDLAWIL( ITMP1, ITMP2, M, A, DESCA, H44, H33, H43H34,
     $                 VCOPY )
         V1SAVE = VCOPY( 1 )
         V2SAVE = VCOPY( 2 )
         V3SAVE = VCOPY( 3 )
         IF( K2( IBULGE ).LE.I-1 ) THEN
   40       CONTINUE
            IF( ( K1( IBULGE ).GE.M+5 ) .AND. ( IBULGE.LT.NBULGE ) )
     $           THEN
               IF( ( MOD( K2( IBULGE )+2, HBL ).EQ.MOD( K2( IBULGE+1 )+
     $             2, HBL ) ) .AND. ( K1( 1 ).LE.I-1 ) ) THEN
                  H44 = S1( 2*JBLK-2*IBULGE, 2*JBLK-2*IBULGE )
                  H33 = S1( 2*JBLK-2*IBULGE-1, 2*JBLK-2*IBULGE-1 )
                  H43H34 = S1( 2*JBLK-2*IBULGE-1, 2*JBLK-2*IBULGE )*
     $                     S1( 2*JBLK-2*IBULGE, 2*JBLK-2*IBULGE-1 )
                  ITMP1 = ISTARTROW
                  ITMP2 = ISTARTCOL
                  CALL PDLAWIL( ITMP1, ITMP2, M, A, DESCA, H44, H33,
     $                          H43H34, VCOPY )
                  V1SAVE = VCOPY( 1 )
                  V2SAVE = VCOPY( 2 )
                  V3SAVE = VCOPY( 3 )
                  IBULGE = IBULGE + 1
               END IF
            END IF
*
*        When we hit a border, there are row and column transforms that
*          overlap over several processors and the code gets very
*          "congested."  As a remedy, when we first hit a border, a 6x6
*          *local* matrix is generated on one node (called SMALLA) and
*          work is done on that.  At the end of the border, the data is
*          passed back and everything stays a lot simpler.
*
            DO 80 KI = 1, IBULGE
*
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
               K = ISTART
               MODKM1 = MOD( K-1, HBL )
               IF( ( MODKM1.GE.HBL-2 ) .AND. ( K.LE.I-1 ) ) THEN
                  DO 81 ITMP1 = 1, 6
                     DO 82 ITMP2 = 1, 6
                        SMALLA(ITMP1, ITMP2, KI) = ZERO
   82                CONTINUE
   81             CONTINUE
                  IF( ( MODKM1.EQ.HBL-2 ) .AND. ( K.LT.I-1 ) ) THEN
*
*                 Copy 6 elements from global A(K-1:K+4,K-1:K+4)
*
                     CALL INFOG2L( K+2, K+2, DESCA, NPROW, NPCOL, MYROW,
     $                             MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     CALL PDLACP3( MIN( 6, N-K+2 ), K-1, A, DESCA,
     $                             SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
     $                             0 )
                  END IF
                  IF( MODKM1.EQ.HBL-1 ) THEN
*
*                 Copy 6 elements from global A(K-2:K+3,K-2:K+3)
*
                     CALL INFOG2L( K+1, K+1, DESCA, NPROW, NPCOL, MYROW,
     $                             MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     CALL PDLACP3( MIN( 6, N-K+3 ), K-2, A, DESCA,
     $                             SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
     $                             0 )
                  END IF
               END IF
*
*           DLAHQR used to have a single row application and a single
*              column application to H.  Here we do something a little
*              more clever.  We break each transformation down into 3
*              parts:
*                  1.) The minimum amount of work it takes to determine
*                        a group of ROTN transformations (this is on
*                        the critical path.) (Loops 130-180)
*                  2.) The small work it takes so that each of the rows
*                        and columns is at the same place.  For example,
*                        all ROTN row transforms are all complete
*                        through some column TMP.  (Loops within 190)
*                  3.) The majority of the row and column transforms
*                        are then applied in a block fashion.
*                        (Loops 290 on.)
*
*           Each of these three parts are further subdivided into 3
*           parts:
*               A.) Work at the start of a border when
*                       MOD(ISTART-1,HBL) = HBL-2
*               B.) Work at the end of a border when
*                       MOD(ISTART-1,HBL) = HBL-1
*               C.) Work in the middle of the block when
*                       MOD(ISTART-1,HBL) < HBL-2
*
               IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
     $             ( MODKM1.EQ.HBL-2 ) .AND.
     $             ( ISTART.LT.MIN( I-1, ISTOP+1 ) ) ) THEN
                  K = ISTART
                  NR = MIN( 3, I-K+1 )
                  IF( K.GT.M ) THEN
                     CALL DCOPY( NR, SMALLA( 2, 1, KI ), 1, VCOPY, 1 )
                  ELSE
                     VCOPY( 1 ) = V1SAVE
                     VCOPY( 2 ) = V2SAVE
                     VCOPY( 3 ) = V3SAVE
                  END IF
                  CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1, T1COPY )
                  IF( K.GT.M ) THEN
                     SMALLA( 2, 1, KI ) = VCOPY( 1 )
                     SMALLA( 3, 1, KI ) = ZERO
                     IF( K.LT.I-1 )
     $                  SMALLA( 4, 1, KI ) = ZERO
                  ELSE IF( M.GT.L ) THEN
                     SMALLA( 2, 1, KI ) = -SMALLA( 2, 1, KI )
                  END IF
                  V2 = VCOPY( 2 )
                  T2 = T1COPY*V2
                  WORK( VECSIDX+( K-1 )*3+1 ) = VCOPY( 2 )
                  WORK( VECSIDX+( K-1 )*3+2 ) = VCOPY( 3 )
                  WORK( VECSIDX+( K-1 )*3+3 ) = T1COPY
               END IF
*
               IF( ( MOD( ISTOP-1, HBL ).EQ.HBL-1 ) .AND.
     $             ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
     $             ( ISTART.LE.MIN( I, ISTOP ) ) ) THEN
                  K = ISTART
                  NR = MIN( 3, I-K+1 )
                  IF( K.GT.M ) THEN
                     CALL DCOPY( NR, SMALLA( 3, 2, KI ), 1, VCOPY, 1 )
                  ELSE
                     VCOPY( 1 ) = V1SAVE
                     VCOPY( 2 ) = V2SAVE
                     VCOPY( 3 ) = V3SAVE
                  END IF
                  CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1, T1COPY )
                  IF( K.GT.M ) THEN
                     SMALLA( 3, 2, KI ) = VCOPY( 1 )
                     SMALLA( 4, 2, KI ) = ZERO
                     IF( K.LT.I-1 )
     $                  SMALLA( 5, 2, KI ) = ZERO
*
*                 Set a subdiagonal to zero now if it's possible
*
*                 H11 = SMALLA(1,1,KI)
*                 H10 = SMALLA(2,1,KI)
*                 H22 = SMALLA(2,2,KI)
*                 IF ( ABS(H10) .LE. MAX(ULP*(ABS(H11)+ABS(H22)),
*    $                                    SMLNUM) ) THEN
*                    SMALLA(2,1,KI) = ZERO
*     WORK(ISUB+K-2) = ZERO
*                 END IF
                  ELSE IF( M.GT.L ) THEN
                     SMALLA( 3, 2, KI ) = -SMALLA( 3, 2, KI )
                  END IF
                  V2 = VCOPY( 2 )
                  T2 = T1COPY*V2
                  WORK( VECSIDX+( K-1 )*3+1 ) = VCOPY( 2 )
                  WORK( VECSIDX+( K-1 )*3+2 ) = VCOPY( 3 )
                  WORK( VECSIDX+( K-1 )*3+3 ) = T1COPY
               END IF
*
               IF( ( MODKM1.EQ.0 ) .AND. ( ISTART.LE.I-1 ) .AND.
     $             ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( RIGHT.EQ.ICURCOL( KI ) ) ) THEN
*
*              (IROW1,ICOL1) is (I,J)-coordinates of H(ISTART,ISTART)
*
                  IROW1 = KROW( KI )
                  ICOL1 = LOCALK2( KI )
                  IF( ISTART.GT.M ) THEN
                     VCOPY( 1 ) = SMALLA( 4, 3, KI )
                     VCOPY( 2 ) = SMALLA( 5, 3, KI )
                     VCOPY( 3 ) = SMALLA( 6, 3, KI )
                     NR = MIN( 3, I-ISTART+1 )
                     CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1,
     $                            T1COPY )
                     A( ( ICOL1-2 )*LDA+IROW1 ) = VCOPY( 1 )
                     A( ( ICOL1-2 )*LDA+IROW1+1 ) = ZERO
                     IF( ISTART.LT.I-1 ) THEN
                        A( ( ICOL1-2 )*LDA+IROW1+2 ) = ZERO
                     END IF
                  ELSE
                     IF( M.GT.L ) THEN
                        A( ( ICOL1-2 )*LDA+IROW1 ) = -A( ( ICOL1-2 )*
     $                     LDA+IROW1 )
                     END IF
                  END IF
               END IF
*
               IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
     $             ( ( ( MODKM1.EQ.HBL-2 ) .AND. ( ISTART.EQ.I-
     $             1 ) ) .OR. ( ( MODKM1.LT.HBL-2 ) .AND. ( ISTART.LE.I-
     $             1 ) ) ) ) THEN
*
*           (IROW1,ICOL1) is (I,J)-coordinates of H(ISTART,ISTART)
*
                  IROW1 = KROW( KI )
                  ICOL1 = LOCALK2( KI )
                  DO 70 K = ISTART, ISTOP
*
*              Create and do these transforms
*
                     NR = MIN( 3, I-K+1 )
                     IF( K.GT.M ) THEN
                        IF( MOD( K-1, HBL ).EQ.0 ) THEN
                           VCOPY( 1 ) = SMALLA( 4, 3, KI )
                           VCOPY( 2 ) = SMALLA( 5, 3, KI )
                           VCOPY( 3 ) = SMALLA( 6, 3, KI )
                        ELSE
                           VCOPY( 1 ) = A( ( ICOL1-2 )*LDA+IROW1 )
                           VCOPY( 2 ) = A( ( ICOL1-2 )*LDA+IROW1+1 )
                           IF( NR.EQ.3 ) THEN
                              VCOPY( 3 ) = A( ( ICOL1-2 )*LDA+IROW1+2 )
                           END IF
                        END IF
                     ELSE
                        VCOPY( 1 ) = V1SAVE
                        VCOPY( 2 ) = V2SAVE
                        VCOPY( 3 ) = V3SAVE
                     END IF
                     CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1,
     $                            T1COPY )
                     IF( K.GT.M ) THEN
                        IF( MOD( K-1, HBL ).GT.0 ) THEN
                           A( ( ICOL1-2 )*LDA+IROW1 ) = VCOPY( 1 )
                           A( ( ICOL1-2 )*LDA+IROW1+1 ) = ZERO
                           IF( K.LT.I-1 ) THEN
                              A( ( ICOL1-2 )*LDA+IROW1+2 ) = ZERO
                           END IF
*
*                    Set a subdiagonal to zero now if it's possible
*
*                    IF ( (IROW1.GT.2) .AND. (ICOL1.GT.2) .AND.
*    $                    (MOD(K-1,HBL) .GT. 1) ) THEN
*                       H11 = A((ICOL1-3)*LDA+IROW1-2)
*                       H10 = A((ICOL1-3)*LDA+IROW1-1)
*                       H22 = A((ICOL1-2)*LDA+IROW1-1)
*                       IF ( ABS(H10).LE.MAX(ULP*(ABS(H11)+ABS(H22)),
*    $                                       SMLNUM) ) THEN
*                           A((ICOL1-3)*LDA+IROW1-1) = ZERO
*                       END IF
*                    END IF
                        END IF
                     ELSE IF( M.GT.L ) THEN
                        IF( MOD( K-1, HBL ).GT.0 ) THEN
                           A( ( ICOL1-2 )*LDA+IROW1 ) = -A( ( ICOL1-2 )*
     $                        LDA+IROW1 )
                        END IF
                     END IF
                     V2 = VCOPY( 2 )
                     T2 = T1COPY*V2
                     WORK( VECSIDX+( K-1 )*3+1 ) = VCOPY( 2 )
                     WORK( VECSIDX+( K-1 )*3+2 ) = VCOPY( 3 )
                     WORK( VECSIDX+( K-1 )*3+3 ) = T1COPY
                     T1 = T1COPY
                     IF( K.LT.ISTOP ) THEN
*
*                 Do some work so next step is ready...
*
                        V3 = VCOPY( 3 )
                        T3 = T1*V3
                        DO 50 J = ICOL1, MIN( K2( KI )+1, I-1 ) +
     $                          ICOL1 - K
                           SUM = A( ( J-1 )*LDA+IROW1 ) +
     $                           V2*A( ( J-1 )*LDA+IROW1+1 ) +
     $                           V3*A( ( J-1 )*LDA+IROW1+2 )
                           A( ( J-1 )*LDA+IROW1 ) = A( ( J-1 )*LDA+
     $                        IROW1 ) - SUM*T1
                           A( ( J-1 )*LDA+IROW1+1 ) = A( ( J-1 )*LDA+
     $                        IROW1+1 ) - SUM*T2
                           A( ( J-1 )*LDA+IROW1+2 ) = A( ( J-1 )*LDA+
     $                        IROW1+2 ) - SUM*T3
   50                   CONTINUE
                        ITMP1 = LOCALK2( KI )
                        DO 60 J = IROW1 + 1, IROW1 + 3
                           SUM = A( ( ICOL1-1 )*LDA+J ) +
     $                           V2*A( ICOL1*LDA+J ) +
     $                           V3*A( ( ICOL1+1 )*LDA+J )
                           A( ( ICOL1-1 )*LDA+J ) = A( ( ICOL1-1 )*LDA+
     $                        J ) - SUM*T1
                           A( ICOL1*LDA+J ) = A( ICOL1*LDA+J ) - SUM*T2
                           A( ( ICOL1+1 )*LDA+J ) = A( ( ICOL1+1 )*LDA+
     $                        J ) - SUM*T3
   60                   CONTINUE
                     END IF
                     IROW1 = IROW1 + 1
                     ICOL1 = ICOL1 + 1
   70             CONTINUE
               END IF
*
               IF( MODKM1.EQ.HBL-2 ) THEN
                  IF( ( DOWN.EQ.ICURROW( KI ) ) .AND.
     $                ( RIGHT.EQ.ICURCOL( KI ) ) .AND. ( NUM.GT.1 ) )
     $                 THEN
                     CALL DGERV2D( CONTXT, 3, 1,
     $                             WORK( VECSIDX+( ISTART-1 )*3+1 ), 3,
     $                             DOWN, RIGHT )
                  END IF
                  IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $                ( MYCOL.EQ.ICURCOL( KI ) ) .AND. ( NUM.GT.1 ) )
     $                 THEN
                     CALL DGESD2D( CONTXT, 3, 1,
     $                             WORK( VECSIDX+( ISTART-1 )*3+1 ), 3,
     $                             UP, LEFT )
                  END IF
                  IF( ( DOWN.EQ.ICURROW( KI ) ) .AND.
     $                ( NPCOL.GT.1 ) .AND. ( ISTART.LE.ISTOP ) ) THEN
                     JJ = MOD( ICURCOL( KI )+NPCOL-1, NPCOL )
                     IF( MYCOL.NE.JJ ) THEN
                        CALL DGEBR2D( CONTXT, 'ROW', ' ',
     $                                3*( ISTOP-ISTART+1 ), 1,
     $                                WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                                3*( ISTOP-ISTART+1 ), MYROW, JJ )
                     ELSE
                        CALL DGEBS2D( CONTXT, 'ROW', ' ',
     $                                3*( ISTOP-ISTART+1 ), 1,
     $                                WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                                3*( ISTOP-ISTART+1 ) )
                     END IF
                  END IF
               END IF
*
*           Broadcast Householder information from the block
*
               IF( ( MYROW.EQ.ICURROW( KI ) ) .AND. ( NPCOL.GT.1 ) .AND.
     $             ( ISTART.LE.ISTOP ) ) THEN
                  IF( MYCOL.NE.ICURCOL( KI ) ) THEN
                     CALL DGEBR2D( CONTXT, 'ROW', ' ',
     $                             3*( ISTOP-ISTART+1 ), 1,
     $                             WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                             3*( ISTOP-ISTART+1 ), MYROW,
     $                             ICURCOL( KI ) )
                  ELSE
                     CALL DGEBS2D( CONTXT, 'ROW', ' ',
     $                             3*( ISTOP-ISTART+1 ), 1,
     $                             WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                             3*( ISTOP-ISTART+1 ) )
                  END IF
               END IF
   80       CONTINUE
*
*        Now do column transforms and finish work
*
            DO 90 KI = 1, IBULGE
*
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
*
               IF( MOD( ISTART-1, HBL ).EQ.HBL-2 ) THEN
                  IF( ( RIGHT.EQ.ICURCOL( KI ) ) .AND.
     $                ( NPROW.GT.1 ) .AND. ( ISTART.LE.ISTOP ) ) THEN
                     JJ = MOD( ICURROW( KI )+NPROW-1, NPROW )
                     IF( MYROW.NE.JJ ) THEN
                        CALL DGEBR2D( CONTXT, 'COL', ' ',
     $                                3*( ISTOP-ISTART+1 ), 1,
     $                                WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                                3*( ISTOP-ISTART+1 ), JJ, MYCOL )
                     ELSE
                        CALL DGEBS2D( CONTXT, 'COL', ' ',
     $                                3*( ISTOP-ISTART+1 ), 1,
     $                                WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                                3*( ISTOP-ISTART+1 ) )
                     END IF
                  END IF
               END IF
*
               IF( ( MYCOL.EQ.ICURCOL( KI ) ) .AND. ( NPROW.GT.1 ) .AND.
     $             ( ISTART.LE.ISTOP ) ) THEN
                  IF( MYROW.NE.ICURROW( KI ) ) THEN
                     CALL DGEBR2D( CONTXT, 'COL', ' ',
     $                             3*( ISTOP-ISTART+1 ), 1,
     $                             WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                             3*( ISTOP-ISTART+1 ), ICURROW( KI ),
     $                             MYCOL )
                  ELSE
                     CALL DGEBS2D( CONTXT, 'COL', ' ',
     $                             3*( ISTOP-ISTART+1 ), 1,
     $                             WORK( VECSIDX+( ISTART-1 )*3+1 ),
     $                             3*( ISTOP-ISTART+1 ) )
                  END IF
               END IF
   90       CONTINUE
*
*        Now do make up work to have things in block fashion
*
            DO 150 KI = 1, IBULGE
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
*
               MODKM1 = MOD( ISTART-1, HBL )
               IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
     $             ( MODKM1.EQ.HBL-2 ) .AND. ( ISTART.LT.I-1 ) ) THEN
                  K = ISTART
*
*              Catch up on column & border work
*
                  NR = MIN( 3, I-K+1 )
                  V2 = WORK( VECSIDX+( K-1 )*3+1 )
                  V3 = WORK( VECSIDX+( K-1 )*3+2 )
                  T1 = WORK( VECSIDX+( K-1 )*3+3 )
                  IF( NR.EQ.3 ) THEN
*
*                 Do some work so next step is ready...
*
*                 V3 = VCOPY( 3 )
                     T2 = T1*V2
                     T3 = T1*V3
                     ITMP1 = MIN( 6, I2+2-K )
                     ITMP2 = MAX( I1-K+2, 1 )
                     DO 100 J = 2, ITMP1
                        SUM = SMALLA( 2, J, KI ) +
     $                        V2*SMALLA( 3, J, KI ) +
     $                        V3*SMALLA( 4, J, KI )
                        SMALLA( 2, J, KI ) = SMALLA( 2, J, KI ) - SUM*T1
                        SMALLA( 3, J, KI ) = SMALLA( 3, J, KI ) - SUM*T2
                        SMALLA( 4, J, KI ) = SMALLA( 4, J, KI ) - SUM*T3
  100                CONTINUE
                     DO 110 J = ITMP2, 5
                        SUM = SMALLA( J, 2, KI ) +
     $                        V2*SMALLA( J, 3, KI ) +
     $                        V3*SMALLA( J, 4, KI )
                        SMALLA( J, 2, KI ) = SMALLA( J, 2, KI ) - SUM*T1
                        SMALLA( J, 3, KI ) = SMALLA( J, 3, KI ) - SUM*T2
                        SMALLA( J, 4, KI ) = SMALLA( J, 4, KI ) - SUM*T3
  110                CONTINUE
                  END IF
               END IF
*
               IF( ( MOD( ISTART-1, HBL ).EQ.HBL-1 ) .AND.
     $             ( ISTART.LE.ISTOP ) .AND.
     $             ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( MYCOL.EQ.ICURCOL( KI ) ) ) THEN
                  K = ISTOP
*
*              Catch up on column & border work
*
                  NR = MIN( 3, I-K+1 )
                  V2 = WORK( VECSIDX+( K-1 )*3+1 )
                  V3 = WORK( VECSIDX+( K-1 )*3+2 )
                  T1 = WORK( VECSIDX+( K-1 )*3+3 )
                  IF( NR.EQ.3 ) THEN
*
*                 Do some work so next step is ready...
*
*                 V3 = VCOPY( 3 )
                     T2 = T1*V2
                     T3 = T1*V3
                     ITMP1 = MIN( 6, I2-K+3 )
                     ITMP2 = MAX( I1-K+3, 1 )
                     DO 120 J = 3, ITMP1
                        SUM = SMALLA( 3, J, KI ) +
     $                        V2*SMALLA( 4, J, KI ) +
     $                        V3*SMALLA( 5, J, KI )
                        SMALLA( 3, J, KI ) = SMALLA( 3, J, KI ) - SUM*T1
                        SMALLA( 4, J, KI ) = SMALLA( 4, J, KI ) - SUM*T2
                        SMALLA( 5, J, KI ) = SMALLA( 5, J, KI ) - SUM*T3
  120                CONTINUE
                     DO 130 J = ITMP2, 6
                        SUM = SMALLA( J, 3, KI ) +
     $                        V2*SMALLA( J, 4, KI ) +
     $                        V3*SMALLA( J, 5, KI )
                        SMALLA( J, 3, KI ) = SMALLA( J, 3, KI ) - SUM*T1
                        SMALLA( J, 4, KI ) = SMALLA( J, 4, KI ) - SUM*T2
                        SMALLA( J, 5, KI ) = SMALLA( J, 5, KI ) - SUM*T3
  130                CONTINUE
                  END IF
               END IF
*
               MODKM1 = MOD( ISTART-1, HBL )
               IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
     $             ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
     $             ( ( ( MODKM1.EQ.HBL-2 ) .AND. ( ISTART.EQ.I-
     $             1 ) ) .OR. ( ( MODKM1.LT.HBL-2 ) .AND. ( ISTART.LE.I-
     $             1 ) ) ) ) THEN
*
*           (IROW1,ICOL1) is (I,J)-coordinates of H(ISTART,ISTART)
*
                  IROW1 = KROW( KI )
                  ICOL1 = LOCALK2( KI )
                  DO 140 K = ISTART, ISTOP
*
*              Catch up on column & border work
*
                     NR = MIN( 3, I-K+1 )
                     V2 = WORK( VECSIDX+( K-1 )*3+1 )
                     V3 = WORK( VECSIDX+( K-1 )*3+2 )
                     T1 = WORK( VECSIDX+( K-1 )*3+3 )
                     IF( K.LT.ISTOP ) THEN
*
*                 Do some work so next step is ready...
*
                        T2 = T1*V2
                        T3 = T1*V3
                        CALL DLAREF( 'Col', A, LDA, .FALSE., Z, LDZ,
     $                               .FALSE., ICOL1, ICOL1, ISTART,
     $                               ISTOP, MIN( ISTART+1, I )-K+IROW1,
     $                               IROW1, LILOZ, LIHIZ,
     $                               WORK( VECSIDX+1 ), V2, V3, T1, T2,
     $                               T3 )
                        IROW1 = IROW1 + 1
                        ICOL1 = ICOL1 + 1
                     ELSE
                        IF( ( NR.EQ.3 ) .AND. ( MOD( K-1,
     $                      HBL ).LT.HBL-2 ) ) THEN
                           T2 = T1*V2
                           T3 = T1*V3
                           CALL DLAREF( 'Row', A, LDA, .FALSE., Z, LDZ,
     $                                  .FALSE., IROW1, IROW1, ISTART,
     $                                  ISTOP, ICOL1, MIN( MIN( K2( KI )
     $                                  +1, I-1 ), I2 )-K+ICOL1, LILOZ,
     $                                  LIHIZ, WORK( VECSIDX+1 ), V2,
     $                                  V3, T1, T2, T3 )
                        END IF
                     END IF
  140             CONTINUE
               END IF
*
*           Send SMALLA back again.
*
               K = ISTART
               MODKM1 = MOD( K-1, HBL )
               IF( ( MODKM1.GE.HBL-2 ) .AND. ( K.LE.I-1 ) ) THEN
                  IF( ( MODKM1.EQ.HBL-2 ) .AND. ( K.LT.I-1 ) ) THEN
*
*                 Copy 6 elements from global A(K-1:K+4,K-1:K+4)
*
                     CALL INFOG2L( K+2, K+2, DESCA, NPROW, NPCOL, MYROW,
     $                             MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     CALL PDLACP3( MIN( 6, N-K+2 ), K-1, A, DESCA,
     $                             SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
     $                             1 )
*
                  END IF
                  IF( MODKM1.EQ.HBL-1 ) THEN
*
*                 Copy 6 elements from global A(K-2:K+3,K-2:K+3)
*
                     CALL INFOG2L( K+1, K+1, DESCA, NPROW, NPCOL, MYROW,
     $                             MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     CALL PDLACP3( MIN( 6, N-K+3 ), K-2, A, DESCA,
     $                             SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
     $                             1 )
                  END IF
               END IF
*
  150       CONTINUE
*
*        Now start major set of block ROW reflections
*
            DO 160 KI = 1, IBULGE
               IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
     $             ( DOWN.NE.ICURROW( KI ) ) )GO TO 160
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
*
               IF( ( ISTOP.GT.ISTART ) .AND.
     $             ( MOD( ISTART-1, HBL ).LT.HBL-2 ) .AND.
     $             ( ICURROW( KI ).EQ.MYROW ) ) THEN
                  IROW1 = MIN( K2( KI )+1, I-1 ) + 1
                  CALL INFOG1L( IROW1, HBL, NPCOL, MYCOL, 0, ITMP1,
     $                          ITMP2 )
                  ITMP2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
                  II = KROW( KI )
                  CALL DLAREF( 'Row', A, LDA, WANTZ, Z, LDZ, .TRUE., II,
     $                         II, ISTART, ISTOP, ITMP1, ITMP2, LILOZ,
     $                         LIHIZ, WORK( VECSIDX+1 ), V2, V3, T1, T2,
     $                         T3 )
               END IF
  160       CONTINUE
*
            DO 180 KI = 1, IBULGE
               IF( KROW( KI ).GT.KP2ROW( KI ) )
     $            GO TO 180
               IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
     $             ( DOWN.NE.ICURROW( KI ) ) )GO TO 180
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
               IF( ( ISTART.EQ.ISTOP ) .OR.
     $             ( MOD( ISTART-1, HBL ).GE.HBL-2 ) .OR.
     $             ( ICURROW( KI ).NE.MYROW ) ) THEN
                  DO 170 K = ISTART, ISTOP
                     V2 = WORK( VECSIDX+( K-1 )*3+1 )
                     V3 = WORK( VECSIDX+( K-1 )*3+2 )
                     T1 = WORK( VECSIDX+( K-1 )*3+3 )
                     NR = MIN( 3, I-K+1 )
                     IF( ( NR.EQ.3 ) .AND. ( KROW( KI ).LE.
     $                   KP2ROW( KI ) ) ) THEN
                        IF( ( K.LT.ISTOP ) .AND.
     $                      ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
                           ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
                        ELSE
                           IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
                              ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
                           END IF
                           IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
                              ITMP1 = MIN( K+4, I2 ) + 1
                           END IF
                           IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                              ITMP1 = MIN( K+3, I2 ) + 1
                           END IF
                        END IF
*
*                    Find local coor of rows K through K+2
*
                        IROW1 = KROW( KI )
                        IROW2 = KP2ROW( KI )
                        CALL INFOG1L( ITMP1, HBL, NPCOL, MYCOL, 0,
     $                                ICOL1, ICOL2 )
                        ICOL2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
                        IF( ( MOD( K-1, HBL ).LT.HBL-2 ) .OR.
     $                      ( NPROW.EQ.1 ) ) THEN
                           T2 = T1*V2
                           T3 = T1*V3
                           CALL DLAREF( 'Row', A, LDA, WANTZ, Z, LDZ,
     $                                  .FALSE., IROW1, IROW1, ISTART,
     $                                  ISTOP, ICOL1, ICOL2, LILOZ,
     $                                  LIHIZ, WORK( VECSIDX+1 ), V2,
     $                                  V3, T1, T2, T3 )
                        END IF
                        IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
     $                      ( NPROW.GT.1 ) ) THEN
                           IF( IROW1.EQ.IROW2 ) THEN
                              CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      A( ( ICOL1-1 )*LDA+IROW2 ),
     $                                      LDA, UP, MYCOL )
                           END IF
                        END IF
                        IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                      ( NPROW.GT.1 ) ) THEN
                           IF( IROW1.EQ.IROW2 ) THEN
                              CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      A( ( ICOL1-1 )*LDA+IROW1 ),
     $                                      LDA, DOWN, MYCOL )
                           END IF
                        END IF
                     END IF
  170             CONTINUE
               END IF
  180       CONTINUE
*
            DO 220 KI = 1, IBULGE
               IF( KROW( KI ).GT.KP2ROW( KI ) )
     $            GO TO 220
               IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
     $             ( DOWN.NE.ICURROW( KI ) ) )GO TO 220
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
               IF( ( ISTART.EQ.ISTOP ) .OR.
     $             ( MOD( ISTART-1, HBL ).GE.HBL-2 ) .OR.
     $             ( ICURROW( KI ).NE.MYROW ) ) THEN
                  DO 210 K = ISTART, ISTOP
                     V2 = WORK( VECSIDX+( K-1 )*3+1 )
                     V3 = WORK( VECSIDX+( K-1 )*3+2 )
                     T1 = WORK( VECSIDX+( K-1 )*3+3 )
                     NR = MIN( 3, I-K+1 )
                     IF( ( NR.EQ.3 ) .AND. ( KROW( KI ).LE.
     $                   KP2ROW( KI ) ) ) THEN
                        IF( ( K.LT.ISTOP ) .AND.
     $                      ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
                           ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
                        ELSE
                           IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
                              ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
                           END IF
                           IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
                              ITMP1 = MIN( K+4, I2 ) + 1
                           END IF
                           IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                              ITMP1 = MIN( K+3, I2 ) + 1
                           END IF
                        END IF
*
                        IROW1 = KROW( KI ) + K - ISTART
                        IROW2 = KP2ROW( KI ) + K - ISTART
                        CALL INFOG1L( ITMP1, HBL, NPCOL, MYCOL, 0,
     $                                ICOL1, ICOL2 )
                        ICOL2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
                        IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
     $                      ( NPROW.GT.1 ) ) THEN
                           IF( IROW1.NE.IROW2 ) THEN
                              CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      WORK( IRBUF+1 ), 1, DOWN,
     $                                      MYCOL )
                              T2 = T1*V2
                              T3 = T1*V3
                              DO 190 J = ICOL1, ICOL2
                                 SUM = A( ( J-1 )*LDA+IROW1 ) +
     $                                 V2*A( ( J-1 )*LDA+IROW1+1 ) +
     $                                 V3*WORK( IRBUF+J-ICOL1+1 )
                                 A( ( J-1 )*LDA+IROW1 ) = A( ( J-1 )*
     $                              LDA+IROW1 ) - SUM*T1
                                 A( ( J-1 )*LDA+IROW1+1 ) = A( ( J-1 )*
     $                              LDA+IROW1+1 ) - SUM*T2
                                 WORK( IRBUF+J-ICOL1+1 ) = WORK( IRBUF+
     $                              J-ICOL1+1 ) - SUM*T3
  190                         CONTINUE
                              CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      WORK( IRBUF+1 ), 1, DOWN,
     $                                      MYCOL )
                           END IF
                        END IF
                        IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                      ( NPROW.GT.1 ) ) THEN
                           IF( IROW1.NE.IROW2 ) THEN
                              CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      WORK( IRBUF+1 ), 1, UP,
     $                                      MYCOL )
                              T2 = T1*V2
                              T3 = T1*V3
                              DO 200 J = ICOL1, ICOL2
                                 SUM = WORK( IRBUF+J-ICOL1+1 ) +
     $                                 V2*A( ( J-1 )*LDA+IROW1 ) +
     $                                 V3*A( ( J-1 )*LDA+IROW1+1 )
                                 WORK( IRBUF+J-ICOL1+1 ) = WORK( IRBUF+
     $                              J-ICOL1+1 ) - SUM*T1
                                 A( ( J-1 )*LDA+IROW1 ) = A( ( J-1 )*
     $                              LDA+IROW1 ) - SUM*T2
                                 A( ( J-1 )*LDA+IROW1+1 ) = A( ( J-1 )*
     $                              LDA+IROW1+1 ) - SUM*T3
  200                         CONTINUE
                              CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      WORK( IRBUF+1 ), 1, UP,
     $                                      MYCOL )
                           END IF
                        END IF
                     END IF
  210             CONTINUE
               END IF
  220       CONTINUE
*
            DO 240 KI = 1, IBULGE
               IF( KROW( KI ).GT.KP2ROW( KI ) )
     $            GO TO 240
               IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
     $             ( DOWN.NE.ICURROW( KI ) ) )GO TO 240
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
               IF( ( ISTART.EQ.ISTOP ) .OR.
     $             ( MOD( ISTART-1, HBL ).GE.HBL-2 ) .OR.
     $             ( ICURROW( KI ).NE.MYROW ) ) THEN
                  DO 230 K = ISTART, ISTOP
                     V2 = WORK( VECSIDX+( K-1 )*3+1 )
                     V3 = WORK( VECSIDX+( K-1 )*3+2 )
                     T1 = WORK( VECSIDX+( K-1 )*3+3 )
                     NR = MIN( 3, I-K+1 )
                     IF( ( NR.EQ.3 ) .AND. ( KROW( KI ).LE.
     $                   KP2ROW( KI ) ) ) THEN
                        IF( ( K.LT.ISTOP ) .AND.
     $                      ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
                           ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
                        ELSE
                           IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
                              ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
                           END IF
                           IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
                              ITMP1 = MIN( K+4, I2 ) + 1
                           END IF
                           IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                              ITMP1 = MIN( K+3, I2 ) + 1
                           END IF
                        END IF
*
                        IROW1 = KROW( KI ) + K - ISTART
                        IROW2 = KP2ROW( KI ) + K - ISTART
                        CALL INFOG1L( ITMP1, HBL, NPCOL, MYCOL, 0,
     $                                ICOL1, ICOL2 )
                        ICOL2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
                        IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
     $                      ( NPROW.GT.1 ) ) THEN
                           IF( IROW1.EQ.IROW2 ) THEN
                              CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      A( ( ICOL1-1 )*LDA+IROW2 ),
     $                                      LDA, UP, MYCOL )
                           END IF
                        END IF
                        IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                      ( NPROW.GT.1 ) ) THEN
                           IF( IROW1.EQ.IROW2 ) THEN
                              CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
     $                                      A( ( ICOL1-1 )*LDA+IROW1 ),
     $                                      LDA, DOWN, MYCOL )
                           END IF
                        END IF
                     END IF
  230             CONTINUE
               END IF
  240       CONTINUE
  250       CONTINUE
*
*        Now start major set of block COL reflections
*
            DO 260 KI = 1, IBULGE
               IF( ( MYCOL.NE.ICURCOL( KI ) ) .AND.
     $             ( RIGHT.NE.ICURCOL( KI ) ) )GO TO 260
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
*
               IF( ( ( MOD( ISTART-1, HBL ).LT.HBL-2 ) .OR. ( NPCOL.EQ.
     $             1 ) ) .AND. ( ICURCOL( KI ).EQ.MYCOL ) .AND.
     $             ( I-ISTOP+1.GE.3 ) ) THEN
                  K = ISTART
                  IF( ( K.LT.ISTOP ) .AND. ( MOD( K-1,
     $                HBL ).LT.HBL-2 ) ) THEN
                     ITMP1 = MIN( ISTART+1, I ) - 1
                  ELSE
                     IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
                        ITMP1 = MIN( K+3, I )
                     END IF
                     IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
                        ITMP1 = MAX( I1, K-1 ) - 1
                     END IF
                     IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                        ITMP1 = MAX( I1, K-2 ) - 1
                     END IF
                  END IF
*
                  ICOL1 = KCOL( KI )
                  CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, IROW1, IROW2 )
                  IROW2 = NUMROC( ITMP1, HBL, MYROW, 0, NPROW )
                  IF( IROW1.LE.IROW2 ) THEN
                     ITMP2 = IROW2
                  ELSE
                     ITMP2 = -1
                  END IF
                  CALL DLAREF( 'Col', A, LDA, WANTZ, Z, LDZ, .TRUE.,
     $                         ICOL1, ICOL1, ISTART, ISTOP, IROW1,
     $                         IROW2, LILOZ, LIHIZ, WORK( VECSIDX+1 ),
     $                         V2, V3, T1, T2, T3 )
                  K = ISTOP
                  IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
*
*                 Do from ITMP1+1 to MIN(K+3,I)
*
                     IF( MOD( K-1, HBL ).LT.HBL-3 ) THEN
                        IROW1 = ITMP2 + 1
                        IF( MOD( ( ITMP1 / HBL ), NPROW ).EQ.MYROW )
     $                       THEN
                           IF( ITMP2.GT.0 ) THEN
                              IROW2 = ITMP2 + MIN( K+3, I ) - ITMP1
                           ELSE
                              IROW2 = IROW1 - 1
                           END IF
                        ELSE
                           IROW2 = IROW1 - 1
                        END IF
                     ELSE
                        CALL INFOG1L( ITMP1+1, HBL, NPROW, MYROW, 0,
     $                                IROW1, IROW2 )
                        IROW2 = NUMROC( MIN( K+3, I ), HBL, MYROW, 0,
     $                          NPROW )
                     END IF
                     V2 = WORK( VECSIDX+( K-1 )*3+1 )
                     V3 = WORK( VECSIDX+( K-1 )*3+2 )
                     T1 = WORK( VECSIDX+( K-1 )*3+3 )
                     T2 = T1*V2
                     T3 = T1*V3
                     ICOL1 = KCOL( KI ) + ISTOP - ISTART
                     CALL DLAREF( 'Col', A, LDA, .FALSE., Z, LDZ,
     $                            .FALSE., ICOL1, ICOL1, ISTART, ISTOP,
     $                            IROW1, IROW2, LILOZ, LIHIZ,
     $                            WORK( VECSIDX+1 ), V2, V3, T1, T2,
     $                            T3 )
                  END IF
               END IF
  260       CONTINUE
*
            DO 320 KI = 1, IBULGE
               IF( KCOL( KI ).GT.KP2COL( KI ) )
     $            GO TO 320
               IF( ( MYCOL.NE.ICURCOL( KI ) ) .AND.
     $             ( RIGHT.NE.ICURCOL( KI ) ) )GO TO 320
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
               IF( MOD( ISTART-1, HBL ).GE.HBL-2 ) THEN
*
*              INFO is found in a buffer
*
                  ISPEC = 1
               ELSE
*
*              All INFO is local
*
                  ISPEC = 0
               END IF
*
               DO 310 K = ISTART, ISTOP
*
                  V2 = WORK( VECSIDX+( K-1 )*3+1 )
                  V3 = WORK( VECSIDX+( K-1 )*3+2 )
                  T1 = WORK( VECSIDX+( K-1 )*3+3 )
                  NR = MIN( 3, I-K+1 )
                  IF( ( NR.EQ.3 ) .AND. ( KCOL( KI ).LE.KP2COL( KI ) ) )
     $                 THEN
*
                     IF( ( K.LT.ISTOP ) .AND.
     $                   ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
                        ITMP1 = MIN( ISTART+1, I ) - 1
                     ELSE
                        IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
                           ITMP1 = MIN( K+3, I )
                        END IF
                        IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
                           ITMP1 = MAX( I1, K-1 ) - 1
                        END IF
                        IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                           ITMP1 = MAX( I1, K-2 ) - 1
                        END IF
                     END IF
                     ICOL1 = KCOL( KI ) + K - ISTART
                     ICOL2 = KP2COL( KI ) + K - ISTART
                     CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, IROW1,
     $                             IROW2 )
                     IROW2 = NUMROC( ITMP1, HBL, MYROW, 0, NPROW )
                     IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
     $                   ( NPCOL.GT.1 ) ) THEN
                        IF( ICOL1.EQ.ICOL2 ) THEN
                           CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   A( ( ICOL1-1 )*LDA+IROW1 ),
     $                                   LDA, MYROW, LEFT )
                           CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   A( ( ICOL1-1 )*LDA+IROW1 ),
     $                                   LDA, MYROW, LEFT )
                        ELSE
                           CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   WORK( ICBUF+1 ), IROW2-IROW1+1,
     $                                   MYROW, RIGHT )
                           T2 = T1*V2
                           T3 = T1*V3
                           DO 270 J = IROW1, IROW2
                              SUM = A( ( ICOL1-1 )*LDA+J ) +
     $                              V2*A( ICOL1*LDA+J ) +
     $                              V3*WORK( ICBUF+J-IROW1+1 )
                              A( ( ICOL1-1 )*LDA+J ) = A( ( ICOL1-1 )*
     $                           LDA+J ) - SUM*T1
                              A( ICOL1*LDA+J ) = A( ICOL1*LDA+J ) -
     $                                           SUM*T2
                              WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+J-
     $                           IROW1+1 ) - SUM*T3
  270                      CONTINUE
                           CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   WORK( ICBUF+1 ), IROW2-IROW1+1,
     $                                   MYROW, RIGHT )
                        END IF
                     END IF
                     IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                   ( NPCOL.GT.1 ) ) THEN
                        IF( ICOL1.EQ.ICOL2 ) THEN
                           CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   A( ( ICOL1-1 )*LDA+IROW1 ),
     $                                   LDA, MYROW, RIGHT )
                           CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   A( ( ICOL1-1 )*LDA+IROW1 ),
     $                                   LDA, MYROW, RIGHT )
                        ELSE
                           CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   WORK( ICBUF+1 ), IROW2-IROW1+1,
     $                                   MYROW, LEFT )
                           T2 = T1*V2
                           T3 = T1*V3
                           DO 280 J = IROW1, IROW2
                              SUM = WORK( ICBUF+J-IROW1+1 ) +
     $                              V2*A( ( ICOL1-1 )*LDA+J ) +
     $                              V3*A( ICOL1*LDA+J )
                              WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+J-
     $                           IROW1+1 ) - SUM*T1
                              A( ( ICOL1-1 )*LDA+J ) = A( ( ICOL1-1 )*
     $                           LDA+J ) - SUM*T2
                              A( ICOL1*LDA+J ) = A( ICOL1*LDA+J ) -
     $                                           SUM*T3
  280                      CONTINUE
                           CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                   WORK( ICBUF+1 ), IROW2-IROW1+1,
     $                                   MYROW, LEFT )
                        END IF
                     END IF
*
*                 If we want Z and we haven't already done any Z
                     IF( ( WANTZ ) .AND. ( MOD( K-1,
     $                   HBL ).GE.HBL-2 ) .AND. ( NPCOL.GT.1 ) ) THEN
*
*                    Accumulate transformations in the matrix Z
*
                        IROW1 = LILOZ
                        IROW2 = LIHIZ
                        IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
                           IF( ICOL1.EQ.ICOL2 ) THEN
                              CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      Z( ( ICOL1-1 )*LDZ+IROW1 ),
     $                                      LDZ, MYROW, LEFT )
                              CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      Z( ( ICOL1-1 )*LDZ+IROW1 ),
     $                                      LDZ, MYROW, LEFT )
                           ELSE
                              CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      WORK( ICBUF+1 ),
     $                                      IROW2-IROW1+1, MYROW,
     $                                      RIGHT )
                              T2 = T1*V2
                              T3 = T1*V3
                              ICOL1 = ( ICOL1-1 )*LDZ
                              DO 290 J = IROW1, IROW2
                                 SUM = Z( ICOL1+J ) +
     $                                 V2*Z( ICOL1+J+LDZ ) +
     $                                 V3*WORK( ICBUF+J-IROW1+1 )
                                 Z( J+ICOL1 ) = Z( J+ICOL1 ) - SUM*T1
                                 Z( J+ICOL1+LDZ ) = Z( J+ICOL1+LDZ ) -
     $                                              SUM*T2
                                 WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+
     $                              J-IROW1+1 ) - SUM*T3
  290                         CONTINUE
                              CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      WORK( ICBUF+1 ),
     $                                      IROW2-IROW1+1, MYROW,
     $                                      RIGHT )
                           END IF
                        END IF
                        IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                           IF( ICOL1.EQ.ICOL2 ) THEN
                              CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      Z( ( ICOL1-1 )*LDZ+IROW1 ),
     $                                      LDZ, MYROW, RIGHT )
                              CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      Z( ( ICOL1-1 )*LDZ+IROW1 ),
     $                                      LDZ, MYROW, RIGHT )
                           ELSE
                              CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      WORK( ICBUF+1 ),
     $                                      IROW2-IROW1+1, MYROW, LEFT )
                              T2 = T1*V2
                              T3 = T1*V3
                              ICOL1 = ( ICOL1-1 )*LDZ
                              DO 300 J = IROW1, IROW2
                                 SUM = WORK( ICBUF+J-IROW1+1 ) +
     $                                 V2*Z( J+ICOL1 ) +
     $                                 V3*Z( J+ICOL1+LDZ )
                                 WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+
     $                              J-IROW1+1 ) - SUM*T1
                                 Z( J+ICOL1 ) = Z( J+ICOL1 ) - SUM*T2
                                 Z( J+ICOL1+LDZ ) = Z( J+ICOL1+LDZ ) -
     $                                              SUM*T3
  300                         CONTINUE
                              CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
     $                                      WORK( ICBUF+1 ),
     $                                      IROW2-IROW1+1, MYROW, LEFT )
                           END IF
                        END IF
                     END IF
                     IF( ICURCOL( KI ).EQ.MYCOL ) THEN
                        IF( ( ISPEC.EQ.0 ) .OR. ( NPCOL.EQ.1 ) ) THEN
                           LOCALK2( KI ) = LOCALK2( KI ) + 1
                        END IF
                     ELSE
                        IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                      ( ICURCOL( KI ).EQ.RIGHT ) ) THEN
                           IF( K.GT.M ) THEN
                              LOCALK2( KI ) = LOCALK2( KI ) + 2
                           ELSE
                              LOCALK2( KI ) = LOCALK2( KI ) + 1
                           END IF
                        END IF
                        IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
     $                      ( I-K.EQ.2 ) .AND. ( ICURCOL( KI ).EQ.
     $                      RIGHT ) ) THEN
                           LOCALK2( KI ) = LOCALK2( KI ) + 2
                        END IF
                     END IF
                  END IF
  310          CONTINUE
  320       CONTINUE
*
*        Column work done
*
  330       CONTINUE
*
*        Now do NR=2 work
*
            DO 410 KI = 1, IBULGE
               ISTART = MAX( K1( KI ), M )
               ISTOP = MIN( K2( KI ), I-1 )
               IF( MOD( ISTART-1, HBL ).GE.HBL-2 ) THEN
*
*              INFO is found in a buffer
*
                  ISPEC = 1
               ELSE
*
*              All INFO is local
*
                  ISPEC = 0
               END IF
*
               DO 400 K = ISTART, ISTOP
*
                  V2 = WORK( VECSIDX+( K-1 )*3+1 )
                  V3 = WORK( VECSIDX+( K-1 )*3+2 )
                  T1 = WORK( VECSIDX+( K-1 )*3+3 )
                  NR = MIN( 3, I-K+1 )
                  IF( NR.EQ.2 ) THEN
                     IF ( ICURROW( KI ).EQ.MYROW ) THEN
                        T2 = T1*V2
                     END IF
                     IF ( ICURCOL( KI ).EQ.MYCOL ) THEN
                        T2 = T1*V2
                     END IF
*
*              Apply G from the left to transform the rows of the matrix
*              in columns K to I2.
*
                     CALL INFOG1L( K, HBL, NPCOL, MYCOL, 0, LILOH,
     $                             LIHIH )
                     LIHIH = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
                     CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, ITMP2,
     $                             ITMP1 )
                     ITMP1 = NUMROC( K+1, HBL, MYROW, 0, NPROW )
                     IF( ICURROW( KI ).EQ.MYROW ) THEN
                        IF( ( ISPEC.EQ.0 ) .OR. ( NPROW.EQ.1 ) .OR.
     $                      ( MOD( K-1, HBL ).EQ.HBL-2 ) ) THEN
                           ITMP1 = ITMP1 - 1
                           DO 340 J = ( LILOH-1 )*LDA,
     $                             ( LIHIH-1 )*LDA, LDA
                              SUM = A( ITMP1+J ) + V2*A( ITMP1+1+J )
                              A( ITMP1+J ) = A( ITMP1+J ) - SUM*T1
                              A( ITMP1+1+J ) = A( ITMP1+1+J ) - SUM*T2
  340                      CONTINUE
                        ELSE
                           IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                              CALL DGERV2D( CONTXT, 1, LIHIH-LILOH+1,
     $                                      WORK( IRBUF+1 ), 1, UP,
     $                                      MYCOL )
                              DO 350 J = LILOH, LIHIH
                                 SUM = WORK( IRBUF+J-LILOH+1 ) +
     $                                 V2*A( ( J-1 )*LDA+ITMP1 )
                                 WORK( IRBUF+J-LILOH+1 ) = WORK( IRBUF+
     $                              J-LILOH+1 ) - SUM*T1
                                 A( ( J-1 )*LDA+ITMP1 ) = A( ( J-1 )*
     $                              LDA+ITMP1 ) - SUM*T2
  350                         CONTINUE
                              CALL DGESD2D( CONTXT, 1, LIHIH-LILOH+1,
     $                                      WORK( IRBUF+1 ), 1, UP,
     $                                      MYCOL )
                           END IF
                        END IF
                     ELSE
                        IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                      ( ICURROW( KI ).EQ.DOWN ) ) THEN
                           CALL DGESD2D( CONTXT, 1, LIHIH-LILOH+1,
     $                                   A( ( LILOH-1 )*LDA+ITMP1 ),
     $                                   LDA, DOWN, MYCOL )
                           CALL DGERV2D( CONTXT, 1, LIHIH-LILOH+1,
     $                                   A( ( LILOH-1 )*LDA+ITMP1 ),
     $                                   LDA, DOWN, MYCOL )
                        END IF
                     END IF
*
*              Apply G from the right to transform the columns of the
*              matrix in rows I1 to MIN(K+3,I).
*
                     CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, LILOH,
     $                             LIHIH )
                     LIHIH = NUMROC( I, HBL, MYROW, 0, NPROW )
*
                     IF( ICURCOL( KI ).EQ.MYCOL ) THEN
*                 LOCAL A(LILOZ:LIHIZ,LOCALK2:LOCALK2+2)
                        IF( ( ISPEC.EQ.0 ) .OR. ( NPCOL.EQ.1 ) .OR.
     $                      ( MOD( K-1, HBL ).EQ.HBL-2 ) ) THEN
                           CALL INFOG1L( K, HBL, NPCOL, MYCOL, 0, ITMP1,
     $                                   ITMP2 )
                           ITMP2 = NUMROC( K+1, HBL, MYCOL, 0, NPCOL )
                           DO 360 J = LILOH, LIHIH
                              SUM = A( ( ITMP1-1 )*LDA+J ) +
     $                              V2*A( ITMP1*LDA+J )
                              A( ( ITMP1-1 )*LDA+J ) = A( ( ITMP1-1 )*
     $                           LDA+J ) - SUM*T1
                              A( ITMP1*LDA+J ) = A( ITMP1*LDA+J ) -
     $                                           SUM*T2
  360                      CONTINUE
                        ELSE
                           ITMP1 = LOCALK2( KI )
                           IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                              CALL DGERV2D( CONTXT, LIHIH-LILOH+1, 1,
     $                                      WORK( ICBUF+1 ),
     $                                      LIHIH-LILOH+1, MYROW, LEFT )
                              DO 370 J = LILOH, LIHIH
                                 SUM = WORK( ICBUF+J ) +
     $                                 V2*A( ( ITMP1-1 )*LDA+J )
                                 WORK( ICBUF+J ) = WORK( ICBUF+J ) -
     $                                             SUM*T1
                                 A( ( ITMP1-1 )*LDA+J )
     $                              = A( ( ITMP1-1 )*LDA+J ) - SUM*T2
  370                         CONTINUE
                              CALL DGESD2D( CONTXT, LIHIH-LILOH+1, 1,
     $                                      WORK( ICBUF+1 ),
     $                                      LIHIH-LILOH+1, MYROW, LEFT )
                           END IF
                        END IF
                     ELSE
                        IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                      ( ICURCOL( KI ).EQ.RIGHT ) ) THEN
                           ITMP1 = KCOL( KI )
                           CALL DGESD2D( CONTXT, LIHIH-LILOH+1, 1,
     $                                   A( ( ITMP1-1 )*LDA+LILOH ),
     $                                   LDA, MYROW, RIGHT )
                           CALL INFOG1L( K, HBL, NPCOL, MYCOL, 0, ITMP1,
     $                                   ITMP2 )
                           ITMP2 = NUMROC( K+1, HBL, MYCOL, 0, NPCOL )
                           CALL DGERV2D( CONTXT, LIHIH-LILOH+1, 1,
     $                                   A( ( ITMP1-1 )*LDA+LILOH ),
     $                                   LDA, MYROW, RIGHT )
                        END IF
                     END IF
*
                     IF( WANTZ ) THEN
*
*                 Accumulate transformations in the matrix Z
*
                        IF( ICURCOL( KI ).EQ.MYCOL ) THEN
*                    LOCAL Z(LILOZ:LIHIZ,LOCALK2:LOCALK2+2)
                           IF( ( ISPEC.EQ.0 ) .OR. ( NPCOL.EQ.1 ) .OR.
     $                         ( MOD( K-1, HBL ).EQ.HBL-2 ) ) THEN
                              ITMP1 = KCOL( KI ) + K - ISTART
                              ITMP1 = ( ITMP1-1 )*LDZ
                              DO 380 J = LILOZ, LIHIZ
                                 SUM = Z( J+ITMP1 ) +
     $                                 V2*Z( J+ITMP1+LDZ )
                                 Z( J+ITMP1 ) = Z( J+ITMP1 ) - SUM*T1
                                 Z( J+ITMP1+LDZ ) = Z( J+ITMP1+LDZ ) -
     $                                              SUM*T2
  380                         CONTINUE
                              LOCALK2( KI ) = LOCALK2( KI ) + 1
                           ELSE
                              ITMP1 = LOCALK2( KI )
*                       IF WE ACTUALLY OWN COLUMN K
                              IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
                                 CALL DGERV2D( CONTXT, LIHIZ-LILOZ+1, 1,
     $                                         WORK( ICBUF+1 ), LDZ,
     $                                         MYROW, LEFT )
                                 ITMP1 = ( ITMP1-1 )*LDZ
                                 DO 390 J = LILOZ, LIHIZ
                                    SUM = WORK( ICBUF+J ) +
     $                                    V2*Z( J+ITMP1 )
                                    WORK( ICBUF+J ) = WORK( ICBUF+J ) -
     $                                 SUM*T1
                                    Z( J+ITMP1 ) = Z( J+ITMP1 ) - SUM*T2
  390                            CONTINUE
                                 CALL DGESD2D( CONTXT, LIHIZ-LILOZ+1, 1,
     $                                         WORK( ICBUF+1 ), LDZ,
     $                                         MYROW, LEFT )
                                 LOCALK2( KI ) = LOCALK2( KI ) + 1
                              END IF
                           END IF
                        ELSE
*
*                    NO WORK BUT NEED TO UPDATE ANYWAY????
*
                           IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
     $                         ( ICURCOL( KI ).EQ.RIGHT ) ) THEN
                              ITMP1 = KCOL( KI )
                              ITMP1 = ( ITMP1-1 )*LDZ
                              CALL DGESD2D( CONTXT, LIHIZ-LILOZ+1, 1,
     $                                      Z( LILOZ+ITMP1 ), LDZ,
     $                                      MYROW, RIGHT )
                              CALL DGERV2D( CONTXT, LIHIZ-LILOZ+1, 1,
     $                                      Z( LILOZ+ITMP1 ), LDZ,
     $                                      MYROW, RIGHT )
                              LOCALK2( KI ) = LOCALK2( KI ) + 1
                           END IF
                        END IF
                     END IF
                  END IF
  400          CONTINUE
*
*        Adjust local information for this bulge
*
               IF( NPROW.EQ.1 ) THEN
                  KROW( KI ) = KROW( KI ) + K2( KI ) - K1( KI ) + 1
                  KP2ROW( KI ) = KP2ROW( KI ) + K2( KI ) - K1( KI ) + 1
               END IF
               IF( ( MOD( K1( KI )-1, HBL ).LT.HBL-2 ) .AND.
     $             ( ICURROW( KI ).EQ.MYROW ) .AND. ( NPROW.GT.1 ) )
     $              THEN
                  KROW( KI ) = KROW( KI ) + K2( KI ) - K1( KI ) + 1
               END IF
               IF( ( MOD( K2( KI ), HBL ).LT.HBL-2 ) .AND.
     $             ( ICURROW( KI ).EQ.MYROW ) .AND. ( NPROW.GT.1 ) )
     $              THEN
                  KP2ROW( KI ) = KP2ROW( KI ) + K2( KI ) - K1( KI ) + 1
               END IF
               IF( ( MOD( K1( KI )-1, HBL ).GE.HBL-2 ) .AND.
     $             ( ( MYROW.EQ.ICURROW( KI ) ) .OR. ( DOWN.EQ.
     $             ICURROW( KI ) ) ) .AND. ( NPROW.GT.1 ) ) THEN
                  CALL INFOG1L( K2( KI )+1, HBL, NPROW, MYROW, 0,
     $                          KROW( KI ), ITMP2 )
                  ITMP2 = NUMROC( N, HBL, MYROW, 0, NPROW )
               END IF
               IF( ( MOD( K2( KI ), HBL ).GE.HBL-2 ) .AND.
     $             ( ( MYROW.EQ.ICURROW( KI ) ) .OR. ( UP.EQ.
     $             ICURROW( KI ) ) ) .AND. ( NPROW.GT.1 ) ) THEN
                  CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, ITMP2,
     $                          KP2ROW( KI ) )
                  KP2ROW( KI ) = NUMROC( K2( KI )+3, HBL, MYROW, 0,
     $                           NPROW )
               END IF
               IF( NPCOL.EQ.1 ) THEN
                  KCOL( KI ) = KCOL( KI ) + K2( KI ) - K1( KI ) + 1
                  KP2COL( KI ) = KP2COL( KI ) + K2( KI ) - K1( KI ) + 1
               END IF
               IF( ( MOD( K1( KI )-1, HBL ).LT.HBL-2 ) .AND.
     $             ( ICURCOL( KI ).EQ.MYCOL ) .AND. ( NPCOL.GT.1 ) )
     $              THEN
                  KCOL( KI ) = KCOL( KI ) + K2( KI ) - K1( KI ) + 1
               END IF
               IF( ( MOD( K2( KI ), HBL ).LT.HBL-2 ) .AND.
     $             ( ICURCOL( KI ).EQ.MYCOL ) .AND. ( NPCOL.GT.1 ) )
     $              THEN
                  KP2COL( KI ) = KP2COL( KI ) + K2( KI ) - K1( KI ) + 1
               END IF
               IF( ( MOD( K1( KI )-1, HBL ).GE.HBL-2 ) .AND.
     $             ( ( MYCOL.EQ.ICURCOL( KI ) ) .OR. ( RIGHT.EQ.
     $             ICURCOL( KI ) ) ) .AND. ( NPCOL.GT.1 ) ) THEN
                  CALL INFOG1L( K2( KI )+1, HBL, NPCOL, MYCOL, 0,
     $                          KCOL( KI ), ITMP2 )
                  ITMP2 = NUMROC( N, HBL, MYCOL, 0, NPCOL )
               END IF
               IF( ( MOD( K2( KI ), HBL ).GE.HBL-2 ) .AND.
     $             ( ( MYCOL.EQ.ICURCOL( KI ) ) .OR. ( LEFT.EQ.
     $             ICURCOL( KI ) ) ) .AND. ( NPCOL.GT.1 ) ) THEN
                  CALL INFOG1L( 1, HBL, NPCOL, MYCOL, 0, ITMP2,
     $                          KP2COL( KI ) )
                  KP2COL( KI ) = NUMROC( K2( KI )+3, HBL, MYCOL, 0,
     $                           NPCOL )
               END IF
               K1( KI ) = K2( KI ) + 1
               ISTOP = MIN( K1( KI )+ROTN-MOD( K1( KI ), ROTN ), I-2 )
               ISTOP = MIN( ISTOP, K1( KI )+HBL-3-
     $                 MOD( K1( KI )-1, HBL ) )
               ISTOP = MIN( ISTOP, I2-2 )
               ISTOP = MAX( ISTOP, K1( KI ) )
*        ISTOP = MIN( ISTOP , I-1 )
               K2( KI ) = ISTOP
               IF( K1( KI ).EQ.ISTOP ) THEN
                  IF( ( MOD( ISTOP-1, HBL ).EQ.HBL-2 ) .AND.
     $                ( I-ISTOP.GT.1 ) ) THEN
*
*              Next step switches rows & cols
*
                     ICURROW( KI ) = MOD( ICURROW( KI )+1, NPROW )
                     ICURCOL( KI ) = MOD( ICURCOL( KI )+1, NPCOL )
                  END IF
               END IF
  410       CONTINUE
            IF( K2( IBULGE ).LE.I-1 )
     $         GO TO 40
         END IF
*
  420 CONTINUE
*
*     Failure to converge in remaining number of iterations
*
      INFO = I
      RETURN
*
  430 CONTINUE
*
      IF( L.EQ.I ) THEN
*
*        H(I,I-1) is negligible: one eigenvalue has converged.
*
         CALL INFOG2L( I, I, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW,
     $                 ICOL, ITMP1, ITMP2 )
         IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
            WR( I ) = A( ( ICOL-1 )*LDA+IROW )
         ELSE
            WR( I ) = ZERO
         END IF
         WI( I ) = ZERO
      ELSE IF( L.EQ.I-1 ) THEN
*
*        H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
*
         CALL PDELGET( 'All', ' ', H11, A, L, L, DESCA )
         CALL PDELGET( 'All', ' ', H21, A, I, L, DESCA )
         CALL PDELGET( 'All', ' ', H12, A, L, I, DESCA )
         CALL PDELGET( 'All', ' ', H22, A, I, I, DESCA )
         CALL DLANV2( H11, H12, H21, H22, WR( L ), WI( L ), WR( I ),
     $                WI( I ), CS, SN )
         IF( NODE .NE. 0 ) THEN
            WR( L ) = ZERO
            WR( I ) = ZERO
            WI( L ) = ZERO
            WI( I ) = ZERO
         ENDIF
      ELSE
*
*        Find the eigenvalues in H(L:I,L:I), L < I-1
*
         JBLK = I - L + 1
         IF( JBLK.LE.2*IBLK ) THEN
            CALL PDLACP3( I-L+1, L, A, DESCA, S1, 2*IBLK, 0, 0, 0 )
            CALL DLAHQR( .FALSE., .FALSE., JBLK, 1, JBLK, S1, 2*IBLK,
     $                   WR( L ), WI( L ), 1, JBLK, Z, LDZ, IERR )
            IF( NODE.NE.0 ) THEN
*
*           Erase the eigenvalues
*
               DO 440 K = L, I
                  WR( K ) = ZERO
                  WI( K ) = ZERO
  440          CONTINUE
            END IF
         END IF
      END IF
*
*     Decrement number of remaining iterations, and return to start of
*     the main loop with new value of I.
*
      ITN = ITN - ITS
      IF( M.EQ.L-10 ) THEN
         I = L - 1
      ELSE
         I = M
      END IF
*     I = L - 1
      GO TO 10
*
  450 CONTINUE
      CALL DGSUM2D( CONTXT, 'All', ' ', N, 1, WR, N, -1, -1 )
      CALL DGSUM2D( CONTXT, 'All', ' ', N, 1, WI, N, -1, -1 )
      RETURN
*
*     END OF PDLAHQR
*
      END