1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
|
SUBROUTINE PDLAHQR( WANTT, WANTZ, N, ILO, IHI, A, DESCA, WR, WI,
$ ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK,
$ ILWORK, INFO )
*
* -- ScaLAPACK routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
* .. Scalar Arguments ..
LOGICAL WANTT, WANTZ
INTEGER IHI, IHIZ, ILO, ILOZ, ILWORK, INFO, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCZ( * ), IWORK( * )
DOUBLE PRECISION A( * ), WI( * ), WORK( * ), WR( * ), Z( * )
* ..
*
* Purpose
* =======
*
* PDLAHQR is an auxiliary routine used to find the Schur decomposition
* and or eigenvalues of a matrix already in Hessenberg form from
* cols ILO to IHI.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* WANTT (global input) LOGICAL
* = .TRUE. : the full Schur form T is required;
* = .FALSE.: only eigenvalues are required.
*
* WANTZ (global input) LOGICAL
* = .TRUE. : the matrix of Schur vectors Z is required;
* = .FALSE.: Schur vectors are not required.
*
* N (global input) INTEGER
* The order of the Hessenberg matrix A (and Z if WANTZ).
* N >= 0.
*
* ILO (global input) INTEGER
* IHI (global input) INTEGER
* It is assumed that A is already upper quasi-triangular in
* rows and columns IHI+1:N, and that A(ILO,ILO-1) = 0 (unless
* ILO = 1). PDLAHQR works primarily with the Hessenberg
* submatrix in rows and columns ILO to IHI, but applies
* transformations to all of H if WANTT is .TRUE..
* 1 <= ILO <= max(1,IHI); IHI <= N.
*
* A (global input/output) DOUBLE PRECISION array, dimension
* (DESCA(LLD_),*)
* On entry, the upper Hessenberg matrix A.
* On exit, if WANTT is .TRUE., A is upper quasi-triangular in
* rows and columns ILO:IHI, with any 2-by-2 or larger diagonal
* blocks not yet in standard form. If WANTT is .FALSE., the
* contents of A are unspecified on exit.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WR (global replicated output) DOUBLE PRECISION array,
* dimension (N)
* WI (global replicated output) DOUBLE PRECISION array,
* dimension (N)
* The real and imaginary parts, respectively, of the computed
* eigenvalues ILO to IHI are stored in the corresponding
* elements of WR and WI. If two eigenvalues are computed as a
* complex conjugate pair, they are stored in consecutive
* elements of WR and WI, say the i-th and (i+1)th, with
* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
* eigenvalues are stored in the same order as on the diagonal
* of the Schur form returned in A. A may be returned with
* larger diagonal blocks until the next release.
*
* ILOZ (global input) INTEGER
* IHIZ (global input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE..
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
* Z (global input/output) DOUBLE PRECISION array.
* If WANTZ is .TRUE., on entry Z must contain the current
* matrix Z of transformations accumulated by PDHSEQR, and on
* exit Z has been updated; transformations are applied only to
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
* If WANTZ is .FALSE., Z is not referenced.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* WORK (local output) DOUBLE PRECISION array of size LWORK
*
* LWORK (local input) INTEGER
* WORK(LWORK) is a local array and LWORK is assumed big enough
* so that LWORK >= 3*N +
* MAX( 2*MAX(DESCZ(LLD_),DESCA(LLD_)) + 2*LOCc(N),
* 7*Ceil(N/HBL)/LCM(NPROW,NPCOL)) )
*
* IWORK (global and local input) INTEGER array of size ILWORK
*
* ILWORK (local input) INTEGER
* This holds the some of the IBLK integer arrays. This is held
* as a place holder for the next release.
*
* INFO (global output) INTEGER
* < 0: parameter number -INFO incorrect or inconsistent
* = 0: successful exit
* > 0: PDLAHQR failed to compute all the eigenvalues ILO to IHI
* in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
* elements i+1:ihi of WR and WI contain those eigenvalues
* which have been successfully computed.
*
* Logic:
* This algorithm is very similar to _LAHQR. Unlike _LAHQR,
* instead of sending one double shift through the largest
* unreduced submatrix, this algorithm sends multiple double shifts
* and spaces them apart so that there can be parallelism across
* several processor row/columns. Another critical difference is
* that this algorithm aggregrates multiple transforms together in
* order to apply them in a block fashion.
*
* Important Local Variables:
* IBLK = The maximum number of bulges that can be computed.
* Currently fixed. Future releases this won't be fixed.
* HBL = The square block size (HBL=DESCA(MB_)=DESCA(NB_))
* ROTN = The number of transforms to block together
* NBULGE = The number of bulges that will be attempted on the
* current submatrix.
* IBULGE = The current number of bulges started.
* K1(*),K2(*) = The current bulge loops from K1(*) to K2(*).
*
* Subroutines:
* This routine calls:
* PDLACONSB -> To determine where to start each iteration
* PDLAWIL -> Given the shift, get the transformation
* DLASORTE -> Pair up eigenvalues so that reals are paired.
* PDLACP3 -> Parallel array to local replicated array copy &
* back.
* DLAREF -> Row/column reflector applier. Core routine
* here.
* PDLASMSUB -> Finds negligible subdiagonal elements.
*
* Current Notes and/or Restrictions:
* 1.) This code requires the distributed block size to be square
* and at least six (6); unlike simpler codes like LU, this
* algorithm is extremely sensitive to block size. Unwise
* choices of too small a block size can lead to bad
* performance.
* 2.) This code requires A and Z to be distributed identically
* and have identical contxts.
* 3.) This release currently does not have a routine for
* resolving the Schur blocks into regular 2x2 form after
* this code is completed. Because of this, a significant
* performance impact is required while the deflation is done
* by sometimes a single column of processors.
* 4.) This code does not currently block the initial transforms
* so that none of the rows or columns for any bulge are
* completed until all are started. To offset pipeline
* start-up it is recommended that at least 2*LCM(NPROW,NPCOL)
* bulges are used (if possible)
* 5.) The maximum number of bulges currently supported is fixed at
* 32. In future versions this will be limited only by the
* incoming WORK array.
* 6.) The matrix A must be in upper Hessenberg form. If elements
* below the subdiagonal are nonzero, the resulting transforms
* may be nonsimilar. This is also true with the LAPACK
* routine.
* 7.) For this release, it is assumed RSRC_=CSRC_=0
* 8.) Currently, all the eigenvalues are distributed to all the
* nodes. Future releases will probably distribute the
* eigenvalues by the column partitioning.
* 9.) The internals of this routine are subject to change.
*
* Implemented by: G. Henry, November 17, 1996
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
DOUBLE PRECISION CONST
PARAMETER ( CONST = 1.50D+0 )
INTEGER IBLK
PARAMETER ( IBLK = 32 )
* ..
* .. Local Scalars ..
INTEGER CONTXT, DOWN, HBL, I, I1, I2, IAFIRST, IBULGE,
$ ICBUF, ICOL, ICOL1, ICOL2, IDIA, IERR, II,
$ IRBUF, IROW, IROW1, IROW2, ISPEC, ISTART,
$ ISTARTCOL, ISTARTROW, ISTOP, ISUB, ISUP,
$ ITERMAX, ITMP1, ITMP2, ITN, ITS, J, JAFIRST,
$ JBLK, JJ, K, KI, L, LCMRC, LDA, LDZ, LEFT,
$ LIHIH, LIHIZ, LILOH, LILOZ, LOCALI1, LOCALI2,
$ LOCALK, LOCALM, M, MODKM1, MYCOL, MYROW,
$ NBULGE, NH, NODE, NPCOL, NPROW, NR, NUM, NZ,
$ RIGHT, ROTN, UP, VECSIDX
DOUBLE PRECISION AVE, DISC, H00, H10, H11, H12, H21, H22, H33,
$ H43H34, H44, OVFL, S, SMLNUM, SUM, T1, T1COPY,
$ T2, T3, ULP, UNFL, V1SAVE, V2, V2SAVE, V3,
$ V3SAVE, CS, SN
* ..
* .. Local Arrays ..
INTEGER ICURCOL( IBLK ), ICURROW( IBLK ), K1( IBLK ),
$ K2( IBLK ), KCOL( IBLK ), KP2COL( IBLK ),
$ KP2ROW( IBLK ), KROW( IBLK ), LOCALK2( IBLK )
DOUBLE PRECISION S1( 2*IBLK, 2*IBLK ), SMALLA( 6, 6, IBLK ),
$ VCOPY( 3 )
* ..
* .. External Functions ..
INTEGER ILCM, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL ILCM, NUMROC, PDLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DCOPY, DGEBR2D, DGEBS2D,
$ DGERV2D, DGESD2D, DGSUM2D, DLAHQR, DLAREF,
$ DLARFG, DLASORTE, IGAMN2D, INFOG1L, INFOG2L,
$ PDLABAD, PDLACONSB, PDLACP3, PDLASMSUB,
$ PDLAWIL, PXERBLA, DLANV2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD, SIGN, SQRT
* ..
* .. Executable Statements ..
*
INFO = 0
*
ITERMAX = 30*( IHI-ILO+1 )
* ITERMAX = 0
IF( N.EQ.0 )
$ RETURN
*
* NODE (IAFIRST,JAFIRST) OWNS A(1,1)
*
HBL = DESCA( MB_ )
CONTXT = DESCA( CTXT_ )
LDA = DESCA( LLD_ )
IAFIRST = DESCA( RSRC_ )
JAFIRST = DESCA( CSRC_ )
LDZ = DESCZ( LLD_ )
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
NODE = MYROW*NPCOL + MYCOL
NUM = NPROW*NPCOL
LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
RIGHT = MOD( MYCOL+1, NPCOL )
UP = MOD( MYROW+NPROW-1, NPROW )
DOWN = MOD( MYROW+1, NPROW )
LCMRC = ILCM( NPROW, NPCOL )
*
* Determine the number of columns we have so we can check workspace
*
LOCALK = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
JJ = N / HBL
IF( JJ*HBL.LT.N )
$ JJ = JJ + 1
JJ = 7*JJ / LCMRC
IF( LWORK.LT.3*N+MAX( 2*MAX( LDA, LDZ )+2*LOCALK, JJ ) ) THEN
INFO = -15
END IF
IF( DESCZ( CTXT_ ).NE.DESCA( CTXT_ ) ) THEN
INFO = -( 1300+CTXT_ )
END IF
IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 700+NB_ )
END IF
IF( DESCZ( MB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 1300+NB_ )
END IF
IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 1300+MB_ )
END IF
IF( ( DESCA( RSRC_ ).NE.0 ) .OR. ( DESCA( CSRC_ ).NE.0 ) ) THEN
INFO = -( 700+RSRC_ )
END IF
IF( ( DESCZ( RSRC_ ).NE.0 ) .OR. ( DESCZ( CSRC_ ).NE.0 ) ) THEN
INFO = -( 1300+RSRC_ )
END IF
IF( ( ILO.GT.N ) .OR. ( ILO.LT.1 ) ) THEN
INFO = -4
END IF
IF( ( IHI.GT.N ) .OR. ( IHI.LT.1 ) ) THEN
INFO = -5
END IF
IF( HBL.LT.5 ) THEN
INFO = -( 700+MB_ )
END IF
CALL IGAMN2D( CONTXT, 'ALL', ' ', 1, 1, INFO, 1, ITMP1, ITMP2, -1,
$ -1, -1 )
IF( INFO.LT.0 ) THEN
CALL PXERBLA( CONTXT, 'PDLAHQR', -INFO )
RETURN
END IF
*
* Set work array indices
*
VECSIDX = 0
IDIA = 3*N
ISUB = 3*N
ISUP = 3*N
IRBUF = 3*N
ICBUF = 3*N
*
* Find a value for ROTN
*
ROTN = HBL / 3
ROTN = MAX( ROTN, HBL-2 )
ROTN = MIN( ROTN, 1 )
*
IF( ILO.EQ.IHI ) THEN
CALL INFOG2L( ILO, ILO, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, II, JJ )
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
WR( ILO ) = A( ( ICOL-1 )*LDA+IROW )
ELSE
WR( ILO ) = ZERO
END IF
WI( ILO ) = ZERO
RETURN
END IF
*
NH = IHI - ILO + 1
NZ = IHIZ - ILOZ + 1
*
CALL INFOG1L( ILOZ, HBL, NPROW, MYROW, 0, LILOZ, LIHIZ )
LIHIZ = NUMROC( IHIZ, HBL, MYROW, 0, NPROW )
*
* Set machine-dependent constants for the stopping criterion.
* If NORM(H) <= SQRT(OVFL), overflow should not occur.
*
UNFL = PDLAMCH( CONTXT, 'SAFE MINIMUM' )
OVFL = ONE / UNFL
CALL PDLABAD( CONTXT, UNFL, OVFL )
ULP = PDLAMCH( CONTXT, 'PRECISION' )
SMLNUM = UNFL*( NH / ULP )
*
* I1 and I2 are the indices of the first row and last column of H
* to which transformations must be applied. If eigenvalues only are
* being computed, I1 and I2 are set inside the main loop.
*
IF( WANTT ) THEN
I1 = 1
I2 = N
END IF
*
* ITN is the total number of QR iterations allowed.
*
ITN = ITERMAX
*
* The main loop begins here. I is the loop index and decreases from
* IHI to ILO in steps of our schur block size (<=2*IBLK). Each
* iteration of the loop works with the active submatrix in rows
* and columns L to I. Eigenvalues I+1 to IHI have already
* converged. Either L = ILO or the global A(L,L-1) is negligible
* so that the matrix splits.
*
I = IHI
10 CONTINUE
L = ILO
IF( I.LT.ILO )
$ GO TO 450
*
* Perform QR iterations on rows and columns ILO to I until a
* submatrix of order 1 or 2 splits off at the bottom because a
* subdiagonal element has become negligible.
*
DO 420 ITS = 0, ITN
*
* Look for a single small subdiagonal element.
*
CALL PDLASMSUB( A, DESCA, I, L, K, SMLNUM, WORK( IRBUF+1 ),
$ LWORK-IRBUF )
L = K
*
IF( L.GT.ILO ) THEN
*
* H(L,L-1) is negligible
*
CALL INFOG2L( L, L-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
A( ( ICOL-1 )*LDA+IROW ) = ZERO
END IF
WORK( ISUB+L-1 ) = ZERO
END IF
*
* Exit from loop if a submatrix of order 1 or 2 has split off.
*
M = L - 10
* IF ( L .GE. I - (2*IBLK-1) )
* IF ( L .GE. I - MAX(2*IBLK-1,HBL) )
IF( L.GE.I-1 )
$ GO TO 430
*
* Now the active submatrix is in rows and columns L to I. If
* eigenvalues only are being computed, only the active submatrix
* need be transformed.
*
IF( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
*
* Copy submatrix of size 2*JBLK and prepare to do generalized
* Wilkinson shift or an exceptional shift
*
JBLK = MIN( IBLK, ( ( I-L+1 ) / 2 )-1 )
IF( JBLK.GT.LCMRC ) THEN
*
* Make sure it's divisible by LCM (we want even workloads!)
*
JBLK = JBLK - MOD( JBLK, LCMRC )
END IF
JBLK = MIN( JBLK, 2*LCMRC )
JBLK = MAX( JBLK, 1 )
*
CALL PDLACP3( 2*JBLK, I-2*JBLK+1, A, DESCA, S1, 2*IBLK, -1, -1,
$ 0 )
IF( ITS.EQ.20 .OR. ITS.EQ.40 ) THEN
*
* Exceptional shift.
*
DO 20 II = 2*JBLK, 2, -1
S1( II, II ) = CONST*( ABS( S1( II, II ) )+
$ ABS( S1( II, II-1 ) ) )
S1( II, II-1 ) = ZERO
S1( II-1, II ) = ZERO
20 CONTINUE
S1( 1, 1 ) = CONST*ABS( S1( 1, 1 ) )
ELSE
CALL DLAHQR( .FALSE., .FALSE., 2*JBLK, 1, 2*JBLK, S1,
$ 2*IBLK, WORK( IRBUF+1 ), WORK( ICBUF+1 ), 1,
$ 2*JBLK, Z, LDZ, IERR )
*
* Prepare to use Wilkinson's double shift
*
H44 = S1( 2*JBLK, 2*JBLK )
H33 = S1( 2*JBLK-1, 2*JBLK-1 )
H43H34 = S1( 2*JBLK-1, 2*JBLK )*S1( 2*JBLK, 2*JBLK-1 )
IF( ( JBLK.GT.1 ) .AND. ( ITS.GT.30 ) ) THEN
S = S1( 2*JBLK-1, 2*JBLK-2 )
DISC = ( H33-H44 )*HALF
DISC = DISC*DISC + H43H34
IF( DISC.GT.ZERO ) THEN
*
* Real roots: Use Wilkinson's shift twice
*
DISC = SQRT( DISC )
AVE = HALF*( H33+H44 )
IF( ABS( H33 )-ABS( H44 ).GT.ZERO ) THEN
H33 = H33*H44 - H43H34
H44 = H33 / ( SIGN( DISC, AVE )+AVE )
ELSE
H44 = SIGN( DISC, AVE ) + AVE
END IF
H33 = H44
H43H34 = ZERO
END IF
END IF
END IF
*
* Look for two consecutive small subdiagonal elements:
* PDLACONSB is the routine that does this.
*
c CALL PDLACONSB( A, DESCA, I, L, M, H44, H33, H43H34,
c $ WORK( IRBUF+1 ), LWORK-IRBUF )
*
* Skip small submatrices
*
* IF ( M .GE. I - 5 )
* $ GO TO 80
*
* In principle PDLACONSB needs to check all shifts to decide
* whether two consecutive small subdiagonal entries are suitable
* as the starting position of the bulge chasing phase. It can be
* dangerous to check the first pair of shifts only. Moreover it
* is quite rare to obtain an M which is much larger than L. This
* process is a bit expensive compared with the benefit.
* Therefore it is sensible to abandon this routine. Total amount
* of communications is saved in average.
*
M = L
* Double-shift QR step
*
* NBULGE is the number of bulges that will be attempted
*
ISTOP = MIN( M+ROTN-MOD( M, ROTN ), I-2 )
ISTOP = MIN( ISTOP, M+HBL-3-MOD( M-1, HBL ) )
ISTOP = MIN( ISTOP, I2-2 )
ISTOP = MAX( ISTOP, M )
NBULGE = ( I-1-ISTOP ) / HBL
*
* Do not exceed maximum determined.
*
NBULGE = MIN( NBULGE, JBLK )
IF( NBULGE.GT.LCMRC ) THEN
*
* Make sure it's divisible by LCM (we want even workloads!)
*
NBULGE = NBULGE - MOD( NBULGE, LCMRC )
END IF
NBULGE = MAX( NBULGE, 1 )
*
IF( ( ITS.NE.20 ) .AND. ( ITS.NE.40 ) .AND. ( NBULGE.GT.1 ) )
$ THEN
*
* sort the eigenpairs so that they are in twos for double
* shifts. only call if several need sorting
*
CALL DLASORTE( S1( 2*( JBLK-NBULGE )+1,
$ 2*( JBLK-NBULGE )+1 ), 2*IBLK, 2*NBULGE,
$ WORK( IRBUF+1 ), IERR )
END IF
*
* IBULGE is the number of bulges going so far
*
IBULGE = 1
*
* "A" row defs : main row transforms from LOCALK to LOCALI2
*
CALL INFOG1L( M, HBL, NPCOL, MYCOL, 0, ITMP1, LOCALK )
LOCALK = NUMROC( N, HBL, MYCOL, 0, NPCOL )
CALL INFOG1L( 1, HBL, NPCOL, MYCOL, 0, ICOL1, LOCALI2 )
LOCALI2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
*
* "A" col defs : main col transforms from LOCALI1 to LOCALM
*
CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, LOCALI1, ICOL1 )
ICOL1 = NUMROC( N, HBL, MYROW, 0, NPROW )
CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, LOCALM, ICOL1 )
ICOL1 = NUMROC( MIN( M+3, I ), HBL, MYROW, 0, NPROW )
*
* Which row & column will start the bulges
*
ISTARTROW = MOD( ( M+1 ) / HBL, NPROW ) + IAFIRST
ISTARTCOL = MOD( ( M+1 ) / HBL, NPCOL ) + JAFIRST
*
CALL INFOG1L( M, HBL, NPROW, MYROW, 0, II, ITMP2 )
ITMP2 = NUMROC( N, HBL, MYROW, 0, NPROW )
CALL INFOG1L( M, HBL, NPCOL, MYCOL, 0, JJ, ITMP2 )
ITMP2 = NUMROC( N, HBL, MYCOL, 0, NPCOL )
CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, ISTOP, KP2ROW( 1 ) )
KP2ROW( 1 ) = NUMROC( M+2, HBL, MYROW, 0, NPROW )
CALL INFOG1L( 1, HBL, NPCOL, MYCOL, 0, ISTOP, KP2COL( 1 ) )
KP2COL( 1 ) = NUMROC( M+2, HBL, MYCOL, 0, NPCOL )
*
* Set all values for bulges. All bulges are stored in
* intermediate steps as loops over KI. Their current "task"
* over the global M to I-1 values is always K1(KI) to K2(KI).
* However, because there are many bulges, K1(KI) & K2(KI) might
* go past that range while later bulges (KI+1,KI+2,etc..) are
* finishing up.
*
* Rules:
* If MOD(K1(KI)-1,HBL) < HBL-2 then MOD(K2(KI)-1,HBL)<HBL-2
* If MOD(K1(KI)-1,HBL) = HBL-2 then MOD(K2(KI)-1,HBL)=HBL-2
* If MOD(K1(KI)-1,HBL) = HBL-1 then MOD(K2(KI)-1,HBL)=HBL-1
* K2(KI)-K1(KI) <= ROTN
*
* We first hit a border when MOD(K1(KI)-1,HBL)=HBL-2 and we hit
* it again when MOD(K1(KI)-1,HBL)=HBL-1.
*
DO 30 KI = 1, NBULGE
K1( KI ) = M
ISTOP = MIN( M+ROTN-MOD( M, ROTN ), I-2 )
ISTOP = MIN( ISTOP, M+HBL-3-MOD( M-1, HBL ) )
ISTOP = MIN( ISTOP, I2-2 )
ISTOP = MAX( ISTOP, M )
K2( KI ) = ISTOP
ICURROW( KI ) = ISTARTROW
ICURCOL( KI ) = ISTARTCOL
LOCALK2( KI ) = ITMP1
KROW( KI ) = II
KCOL( KI ) = JJ
IF( KI.GT.1 )
$ KP2ROW( KI ) = KP2ROW( 1 )
IF( KI.GT.1 )
$ KP2COL( KI ) = KP2COL( 1 )
30 CONTINUE
*
* Get first transform on node who owns M+2,M+2
*
DO 31 ITMP1 = 1, 3
VCOPY(ITMP1) = ZERO
31 CONTINUE
ITMP1 = ISTARTROW
ITMP2 = ISTARTCOL
CALL PDLAWIL( ITMP1, ITMP2, M, A, DESCA, H44, H33, H43H34,
$ VCOPY )
V1SAVE = VCOPY( 1 )
V2SAVE = VCOPY( 2 )
V3SAVE = VCOPY( 3 )
IF( K2( IBULGE ).LE.I-1 ) THEN
40 CONTINUE
IF( ( K1( IBULGE ).GE.M+5 ) .AND. ( IBULGE.LT.NBULGE ) )
$ THEN
IF( ( MOD( K2( IBULGE )+2, HBL ).EQ.MOD( K2( IBULGE+1 )+
$ 2, HBL ) ) .AND. ( K1( 1 ).LE.I-1 ) ) THEN
H44 = S1( 2*JBLK-2*IBULGE, 2*JBLK-2*IBULGE )
H33 = S1( 2*JBLK-2*IBULGE-1, 2*JBLK-2*IBULGE-1 )
H43H34 = S1( 2*JBLK-2*IBULGE-1, 2*JBLK-2*IBULGE )*
$ S1( 2*JBLK-2*IBULGE, 2*JBLK-2*IBULGE-1 )
ITMP1 = ISTARTROW
ITMP2 = ISTARTCOL
CALL PDLAWIL( ITMP1, ITMP2, M, A, DESCA, H44, H33,
$ H43H34, VCOPY )
V1SAVE = VCOPY( 1 )
V2SAVE = VCOPY( 2 )
V3SAVE = VCOPY( 3 )
IBULGE = IBULGE + 1
END IF
END IF
*
* When we hit a border, there are row and column transforms that
* overlap over several processors and the code gets very
* "congested." As a remedy, when we first hit a border, a 6x6
* *local* matrix is generated on one node (called SMALLA) and
* work is done on that. At the end of the border, the data is
* passed back and everything stays a lot simpler.
*
DO 80 KI = 1, IBULGE
*
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
K = ISTART
MODKM1 = MOD( K-1, HBL )
IF( ( MODKM1.GE.HBL-2 ) .AND. ( K.LE.I-1 ) ) THEN
DO 81 ITMP1 = 1, 6
DO 82 ITMP2 = 1, 6
SMALLA(ITMP1, ITMP2, KI) = ZERO
82 CONTINUE
81 CONTINUE
IF( ( MODKM1.EQ.HBL-2 ) .AND. ( K.LT.I-1 ) ) THEN
*
* Copy 6 elements from global A(K-1:K+4,K-1:K+4)
*
CALL INFOG2L( K+2, K+2, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
CALL PDLACP3( MIN( 6, N-K+2 ), K-1, A, DESCA,
$ SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
$ 0 )
END IF
IF( MODKM1.EQ.HBL-1 ) THEN
*
* Copy 6 elements from global A(K-2:K+3,K-2:K+3)
*
CALL INFOG2L( K+1, K+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
CALL PDLACP3( MIN( 6, N-K+3 ), K-2, A, DESCA,
$ SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
$ 0 )
END IF
END IF
*
* DLAHQR used to have a single row application and a single
* column application to H. Here we do something a little
* more clever. We break each transformation down into 3
* parts:
* 1.) The minimum amount of work it takes to determine
* a group of ROTN transformations (this is on
* the critical path.) (Loops 130-180)
* 2.) The small work it takes so that each of the rows
* and columns is at the same place. For example,
* all ROTN row transforms are all complete
* through some column TMP. (Loops within 190)
* 3.) The majority of the row and column transforms
* are then applied in a block fashion.
* (Loops 290 on.)
*
* Each of these three parts are further subdivided into 3
* parts:
* A.) Work at the start of a border when
* MOD(ISTART-1,HBL) = HBL-2
* B.) Work at the end of a border when
* MOD(ISTART-1,HBL) = HBL-1
* C.) Work in the middle of the block when
* MOD(ISTART-1,HBL) < HBL-2
*
IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
$ ( MODKM1.EQ.HBL-2 ) .AND.
$ ( ISTART.LT.MIN( I-1, ISTOP+1 ) ) ) THEN
K = ISTART
NR = MIN( 3, I-K+1 )
IF( K.GT.M ) THEN
CALL DCOPY( NR, SMALLA( 2, 1, KI ), 1, VCOPY, 1 )
ELSE
VCOPY( 1 ) = V1SAVE
VCOPY( 2 ) = V2SAVE
VCOPY( 3 ) = V3SAVE
END IF
CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1, T1COPY )
IF( K.GT.M ) THEN
SMALLA( 2, 1, KI ) = VCOPY( 1 )
SMALLA( 3, 1, KI ) = ZERO
IF( K.LT.I-1 )
$ SMALLA( 4, 1, KI ) = ZERO
ELSE IF( M.GT.L ) THEN
SMALLA( 2, 1, KI ) = -SMALLA( 2, 1, KI )
END IF
V2 = VCOPY( 2 )
T2 = T1COPY*V2
WORK( VECSIDX+( K-1 )*3+1 ) = VCOPY( 2 )
WORK( VECSIDX+( K-1 )*3+2 ) = VCOPY( 3 )
WORK( VECSIDX+( K-1 )*3+3 ) = T1COPY
END IF
*
IF( ( MOD( ISTOP-1, HBL ).EQ.HBL-1 ) .AND.
$ ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
$ ( ISTART.LE.MIN( I, ISTOP ) ) ) THEN
K = ISTART
NR = MIN( 3, I-K+1 )
IF( K.GT.M ) THEN
CALL DCOPY( NR, SMALLA( 3, 2, KI ), 1, VCOPY, 1 )
ELSE
VCOPY( 1 ) = V1SAVE
VCOPY( 2 ) = V2SAVE
VCOPY( 3 ) = V3SAVE
END IF
CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1, T1COPY )
IF( K.GT.M ) THEN
SMALLA( 3, 2, KI ) = VCOPY( 1 )
SMALLA( 4, 2, KI ) = ZERO
IF( K.LT.I-1 )
$ SMALLA( 5, 2, KI ) = ZERO
*
* Set a subdiagonal to zero now if it's possible
*
* H11 = SMALLA(1,1,KI)
* H10 = SMALLA(2,1,KI)
* H22 = SMALLA(2,2,KI)
* IF ( ABS(H10) .LE. MAX(ULP*(ABS(H11)+ABS(H22)),
* $ SMLNUM) ) THEN
* SMALLA(2,1,KI) = ZERO
* WORK(ISUB+K-2) = ZERO
* END IF
ELSE IF( M.GT.L ) THEN
SMALLA( 3, 2, KI ) = -SMALLA( 3, 2, KI )
END IF
V2 = VCOPY( 2 )
T2 = T1COPY*V2
WORK( VECSIDX+( K-1 )*3+1 ) = VCOPY( 2 )
WORK( VECSIDX+( K-1 )*3+2 ) = VCOPY( 3 )
WORK( VECSIDX+( K-1 )*3+3 ) = T1COPY
END IF
*
IF( ( MODKM1.EQ.0 ) .AND. ( ISTART.LE.I-1 ) .AND.
$ ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( RIGHT.EQ.ICURCOL( KI ) ) ) THEN
*
* (IROW1,ICOL1) is (I,J)-coordinates of H(ISTART,ISTART)
*
IROW1 = KROW( KI )
ICOL1 = LOCALK2( KI )
IF( ISTART.GT.M ) THEN
VCOPY( 1 ) = SMALLA( 4, 3, KI )
VCOPY( 2 ) = SMALLA( 5, 3, KI )
VCOPY( 3 ) = SMALLA( 6, 3, KI )
NR = MIN( 3, I-ISTART+1 )
CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1,
$ T1COPY )
A( ( ICOL1-2 )*LDA+IROW1 ) = VCOPY( 1 )
A( ( ICOL1-2 )*LDA+IROW1+1 ) = ZERO
IF( ISTART.LT.I-1 ) THEN
A( ( ICOL1-2 )*LDA+IROW1+2 ) = ZERO
END IF
ELSE
IF( M.GT.L ) THEN
A( ( ICOL1-2 )*LDA+IROW1 ) = -A( ( ICOL1-2 )*
$ LDA+IROW1 )
END IF
END IF
END IF
*
IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
$ ( ( ( MODKM1.EQ.HBL-2 ) .AND. ( ISTART.EQ.I-
$ 1 ) ) .OR. ( ( MODKM1.LT.HBL-2 ) .AND. ( ISTART.LE.I-
$ 1 ) ) ) ) THEN
*
* (IROW1,ICOL1) is (I,J)-coordinates of H(ISTART,ISTART)
*
IROW1 = KROW( KI )
ICOL1 = LOCALK2( KI )
DO 70 K = ISTART, ISTOP
*
* Create and do these transforms
*
NR = MIN( 3, I-K+1 )
IF( K.GT.M ) THEN
IF( MOD( K-1, HBL ).EQ.0 ) THEN
VCOPY( 1 ) = SMALLA( 4, 3, KI )
VCOPY( 2 ) = SMALLA( 5, 3, KI )
VCOPY( 3 ) = SMALLA( 6, 3, KI )
ELSE
VCOPY( 1 ) = A( ( ICOL1-2 )*LDA+IROW1 )
VCOPY( 2 ) = A( ( ICOL1-2 )*LDA+IROW1+1 )
IF( NR.EQ.3 ) THEN
VCOPY( 3 ) = A( ( ICOL1-2 )*LDA+IROW1+2 )
END IF
END IF
ELSE
VCOPY( 1 ) = V1SAVE
VCOPY( 2 ) = V2SAVE
VCOPY( 3 ) = V3SAVE
END IF
CALL DLARFG( NR, VCOPY( 1 ), VCOPY( 2 ), 1,
$ T1COPY )
IF( K.GT.M ) THEN
IF( MOD( K-1, HBL ).GT.0 ) THEN
A( ( ICOL1-2 )*LDA+IROW1 ) = VCOPY( 1 )
A( ( ICOL1-2 )*LDA+IROW1+1 ) = ZERO
IF( K.LT.I-1 ) THEN
A( ( ICOL1-2 )*LDA+IROW1+2 ) = ZERO
END IF
*
* Set a subdiagonal to zero now if it's possible
*
* IF ( (IROW1.GT.2) .AND. (ICOL1.GT.2) .AND.
* $ (MOD(K-1,HBL) .GT. 1) ) THEN
* H11 = A((ICOL1-3)*LDA+IROW1-2)
* H10 = A((ICOL1-3)*LDA+IROW1-1)
* H22 = A((ICOL1-2)*LDA+IROW1-1)
* IF ( ABS(H10).LE.MAX(ULP*(ABS(H11)+ABS(H22)),
* $ SMLNUM) ) THEN
* A((ICOL1-3)*LDA+IROW1-1) = ZERO
* END IF
* END IF
END IF
ELSE IF( M.GT.L ) THEN
IF( MOD( K-1, HBL ).GT.0 ) THEN
A( ( ICOL1-2 )*LDA+IROW1 ) = -A( ( ICOL1-2 )*
$ LDA+IROW1 )
END IF
END IF
V2 = VCOPY( 2 )
T2 = T1COPY*V2
WORK( VECSIDX+( K-1 )*3+1 ) = VCOPY( 2 )
WORK( VECSIDX+( K-1 )*3+2 ) = VCOPY( 3 )
WORK( VECSIDX+( K-1 )*3+3 ) = T1COPY
T1 = T1COPY
IF( K.LT.ISTOP ) THEN
*
* Do some work so next step is ready...
*
V3 = VCOPY( 3 )
T3 = T1*V3
DO 50 J = ICOL1, MIN( K2( KI )+1, I-1 ) +
$ ICOL1 - K
SUM = A( ( J-1 )*LDA+IROW1 ) +
$ V2*A( ( J-1 )*LDA+IROW1+1 ) +
$ V3*A( ( J-1 )*LDA+IROW1+2 )
A( ( J-1 )*LDA+IROW1 ) = A( ( J-1 )*LDA+
$ IROW1 ) - SUM*T1
A( ( J-1 )*LDA+IROW1+1 ) = A( ( J-1 )*LDA+
$ IROW1+1 ) - SUM*T2
A( ( J-1 )*LDA+IROW1+2 ) = A( ( J-1 )*LDA+
$ IROW1+2 ) - SUM*T3
50 CONTINUE
ITMP1 = LOCALK2( KI )
DO 60 J = IROW1 + 1, IROW1 + 3
SUM = A( ( ICOL1-1 )*LDA+J ) +
$ V2*A( ICOL1*LDA+J ) +
$ V3*A( ( ICOL1+1 )*LDA+J )
A( ( ICOL1-1 )*LDA+J ) = A( ( ICOL1-1 )*LDA+
$ J ) - SUM*T1
A( ICOL1*LDA+J ) = A( ICOL1*LDA+J ) - SUM*T2
A( ( ICOL1+1 )*LDA+J ) = A( ( ICOL1+1 )*LDA+
$ J ) - SUM*T3
60 CONTINUE
END IF
IROW1 = IROW1 + 1
ICOL1 = ICOL1 + 1
70 CONTINUE
END IF
*
IF( MODKM1.EQ.HBL-2 ) THEN
IF( ( DOWN.EQ.ICURROW( KI ) ) .AND.
$ ( RIGHT.EQ.ICURCOL( KI ) ) .AND. ( NUM.GT.1 ) )
$ THEN
CALL DGERV2D( CONTXT, 3, 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ), 3,
$ DOWN, RIGHT )
END IF
IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) .AND. ( NUM.GT.1 ) )
$ THEN
CALL DGESD2D( CONTXT, 3, 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ), 3,
$ UP, LEFT )
END IF
IF( ( DOWN.EQ.ICURROW( KI ) ) .AND.
$ ( NPCOL.GT.1 ) .AND. ( ISTART.LE.ISTOP ) ) THEN
JJ = MOD( ICURCOL( KI )+NPCOL-1, NPCOL )
IF( MYCOL.NE.JJ ) THEN
CALL DGEBR2D( CONTXT, 'ROW', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ), MYROW, JJ )
ELSE
CALL DGEBS2D( CONTXT, 'ROW', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ) )
END IF
END IF
END IF
*
* Broadcast Householder information from the block
*
IF( ( MYROW.EQ.ICURROW( KI ) ) .AND. ( NPCOL.GT.1 ) .AND.
$ ( ISTART.LE.ISTOP ) ) THEN
IF( MYCOL.NE.ICURCOL( KI ) ) THEN
CALL DGEBR2D( CONTXT, 'ROW', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ), MYROW,
$ ICURCOL( KI ) )
ELSE
CALL DGEBS2D( CONTXT, 'ROW', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ) )
END IF
END IF
80 CONTINUE
*
* Now do column transforms and finish work
*
DO 90 KI = 1, IBULGE
*
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
*
IF( MOD( ISTART-1, HBL ).EQ.HBL-2 ) THEN
IF( ( RIGHT.EQ.ICURCOL( KI ) ) .AND.
$ ( NPROW.GT.1 ) .AND. ( ISTART.LE.ISTOP ) ) THEN
JJ = MOD( ICURROW( KI )+NPROW-1, NPROW )
IF( MYROW.NE.JJ ) THEN
CALL DGEBR2D( CONTXT, 'COL', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ), JJ, MYCOL )
ELSE
CALL DGEBS2D( CONTXT, 'COL', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ) )
END IF
END IF
END IF
*
IF( ( MYCOL.EQ.ICURCOL( KI ) ) .AND. ( NPROW.GT.1 ) .AND.
$ ( ISTART.LE.ISTOP ) ) THEN
IF( MYROW.NE.ICURROW( KI ) ) THEN
CALL DGEBR2D( CONTXT, 'COL', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ), ICURROW( KI ),
$ MYCOL )
ELSE
CALL DGEBS2D( CONTXT, 'COL', ' ',
$ 3*( ISTOP-ISTART+1 ), 1,
$ WORK( VECSIDX+( ISTART-1 )*3+1 ),
$ 3*( ISTOP-ISTART+1 ) )
END IF
END IF
90 CONTINUE
*
* Now do make up work to have things in block fashion
*
DO 150 KI = 1, IBULGE
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
*
MODKM1 = MOD( ISTART-1, HBL )
IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
$ ( MODKM1.EQ.HBL-2 ) .AND. ( ISTART.LT.I-1 ) ) THEN
K = ISTART
*
* Catch up on column & border work
*
NR = MIN( 3, I-K+1 )
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
IF( NR.EQ.3 ) THEN
*
* Do some work so next step is ready...
*
* V3 = VCOPY( 3 )
T2 = T1*V2
T3 = T1*V3
ITMP1 = MIN( 6, I2+2-K )
ITMP2 = MAX( I1-K+2, 1 )
DO 100 J = 2, ITMP1
SUM = SMALLA( 2, J, KI ) +
$ V2*SMALLA( 3, J, KI ) +
$ V3*SMALLA( 4, J, KI )
SMALLA( 2, J, KI ) = SMALLA( 2, J, KI ) - SUM*T1
SMALLA( 3, J, KI ) = SMALLA( 3, J, KI ) - SUM*T2
SMALLA( 4, J, KI ) = SMALLA( 4, J, KI ) - SUM*T3
100 CONTINUE
DO 110 J = ITMP2, 5
SUM = SMALLA( J, 2, KI ) +
$ V2*SMALLA( J, 3, KI ) +
$ V3*SMALLA( J, 4, KI )
SMALLA( J, 2, KI ) = SMALLA( J, 2, KI ) - SUM*T1
SMALLA( J, 3, KI ) = SMALLA( J, 3, KI ) - SUM*T2
SMALLA( J, 4, KI ) = SMALLA( J, 4, KI ) - SUM*T3
110 CONTINUE
END IF
END IF
*
IF( ( MOD( ISTART-1, HBL ).EQ.HBL-1 ) .AND.
$ ( ISTART.LE.ISTOP ) .AND.
$ ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) ) THEN
K = ISTOP
*
* Catch up on column & border work
*
NR = MIN( 3, I-K+1 )
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
IF( NR.EQ.3 ) THEN
*
* Do some work so next step is ready...
*
* V3 = VCOPY( 3 )
T2 = T1*V2
T3 = T1*V3
ITMP1 = MIN( 6, I2-K+3 )
ITMP2 = MAX( I1-K+3, 1 )
DO 120 J = 3, ITMP1
SUM = SMALLA( 3, J, KI ) +
$ V2*SMALLA( 4, J, KI ) +
$ V3*SMALLA( 5, J, KI )
SMALLA( 3, J, KI ) = SMALLA( 3, J, KI ) - SUM*T1
SMALLA( 4, J, KI ) = SMALLA( 4, J, KI ) - SUM*T2
SMALLA( 5, J, KI ) = SMALLA( 5, J, KI ) - SUM*T3
120 CONTINUE
DO 130 J = ITMP2, 6
SUM = SMALLA( J, 3, KI ) +
$ V2*SMALLA( J, 4, KI ) +
$ V3*SMALLA( J, 5, KI )
SMALLA( J, 3, KI ) = SMALLA( J, 3, KI ) - SUM*T1
SMALLA( J, 4, KI ) = SMALLA( J, 4, KI ) - SUM*T2
SMALLA( J, 5, KI ) = SMALLA( J, 5, KI ) - SUM*T3
130 CONTINUE
END IF
END IF
*
MODKM1 = MOD( ISTART-1, HBL )
IF( ( MYROW.EQ.ICURROW( KI ) ) .AND.
$ ( MYCOL.EQ.ICURCOL( KI ) ) .AND.
$ ( ( ( MODKM1.EQ.HBL-2 ) .AND. ( ISTART.EQ.I-
$ 1 ) ) .OR. ( ( MODKM1.LT.HBL-2 ) .AND. ( ISTART.LE.I-
$ 1 ) ) ) ) THEN
*
* (IROW1,ICOL1) is (I,J)-coordinates of H(ISTART,ISTART)
*
IROW1 = KROW( KI )
ICOL1 = LOCALK2( KI )
DO 140 K = ISTART, ISTOP
*
* Catch up on column & border work
*
NR = MIN( 3, I-K+1 )
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
IF( K.LT.ISTOP ) THEN
*
* Do some work so next step is ready...
*
T2 = T1*V2
T3 = T1*V3
CALL DLAREF( 'Col', A, LDA, .FALSE., Z, LDZ,
$ .FALSE., ICOL1, ICOL1, ISTART,
$ ISTOP, MIN( ISTART+1, I )-K+IROW1,
$ IROW1, LILOZ, LIHIZ,
$ WORK( VECSIDX+1 ), V2, V3, T1, T2,
$ T3 )
IROW1 = IROW1 + 1
ICOL1 = ICOL1 + 1
ELSE
IF( ( NR.EQ.3 ) .AND. ( MOD( K-1,
$ HBL ).LT.HBL-2 ) ) THEN
T2 = T1*V2
T3 = T1*V3
CALL DLAREF( 'Row', A, LDA, .FALSE., Z, LDZ,
$ .FALSE., IROW1, IROW1, ISTART,
$ ISTOP, ICOL1, MIN( MIN( K2( KI )
$ +1, I-1 ), I2 )-K+ICOL1, LILOZ,
$ LIHIZ, WORK( VECSIDX+1 ), V2,
$ V3, T1, T2, T3 )
END IF
END IF
140 CONTINUE
END IF
*
* Send SMALLA back again.
*
K = ISTART
MODKM1 = MOD( K-1, HBL )
IF( ( MODKM1.GE.HBL-2 ) .AND. ( K.LE.I-1 ) ) THEN
IF( ( MODKM1.EQ.HBL-2 ) .AND. ( K.LT.I-1 ) ) THEN
*
* Copy 6 elements from global A(K-1:K+4,K-1:K+4)
*
CALL INFOG2L( K+2, K+2, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
CALL PDLACP3( MIN( 6, N-K+2 ), K-1, A, DESCA,
$ SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
$ 1 )
*
END IF
IF( MODKM1.EQ.HBL-1 ) THEN
*
* Copy 6 elements from global A(K-2:K+3,K-2:K+3)
*
CALL INFOG2L( K+1, K+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
CALL PDLACP3( MIN( 6, N-K+3 ), K-2, A, DESCA,
$ SMALLA( 1, 1, KI ), 6, ITMP1, ITMP2,
$ 1 )
END IF
END IF
*
150 CONTINUE
*
* Now start major set of block ROW reflections
*
DO 160 KI = 1, IBULGE
IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
$ ( DOWN.NE.ICURROW( KI ) ) )GO TO 160
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
*
IF( ( ISTOP.GT.ISTART ) .AND.
$ ( MOD( ISTART-1, HBL ).LT.HBL-2 ) .AND.
$ ( ICURROW( KI ).EQ.MYROW ) ) THEN
IROW1 = MIN( K2( KI )+1, I-1 ) + 1
CALL INFOG1L( IROW1, HBL, NPCOL, MYCOL, 0, ITMP1,
$ ITMP2 )
ITMP2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
II = KROW( KI )
CALL DLAREF( 'Row', A, LDA, WANTZ, Z, LDZ, .TRUE., II,
$ II, ISTART, ISTOP, ITMP1, ITMP2, LILOZ,
$ LIHIZ, WORK( VECSIDX+1 ), V2, V3, T1, T2,
$ T3 )
END IF
160 CONTINUE
*
DO 180 KI = 1, IBULGE
IF( KROW( KI ).GT.KP2ROW( KI ) )
$ GO TO 180
IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
$ ( DOWN.NE.ICURROW( KI ) ) )GO TO 180
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
IF( ( ISTART.EQ.ISTOP ) .OR.
$ ( MOD( ISTART-1, HBL ).GE.HBL-2 ) .OR.
$ ( ICURROW( KI ).NE.MYROW ) ) THEN
DO 170 K = ISTART, ISTOP
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
NR = MIN( 3, I-K+1 )
IF( ( NR.EQ.3 ) .AND. ( KROW( KI ).LE.
$ KP2ROW( KI ) ) ) THEN
IF( ( K.LT.ISTOP ) .AND.
$ ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
ELSE
IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
ITMP1 = MIN( K+4, I2 ) + 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
ITMP1 = MIN( K+3, I2 ) + 1
END IF
END IF
*
* Find local coor of rows K through K+2
*
IROW1 = KROW( KI )
IROW2 = KP2ROW( KI )
CALL INFOG1L( ITMP1, HBL, NPCOL, MYCOL, 0,
$ ICOL1, ICOL2 )
ICOL2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
IF( ( MOD( K-1, HBL ).LT.HBL-2 ) .OR.
$ ( NPROW.EQ.1 ) ) THEN
T2 = T1*V2
T3 = T1*V3
CALL DLAREF( 'Row', A, LDA, WANTZ, Z, LDZ,
$ .FALSE., IROW1, IROW1, ISTART,
$ ISTOP, ICOL1, ICOL2, LILOZ,
$ LIHIZ, WORK( VECSIDX+1 ), V2,
$ V3, T1, T2, T3 )
END IF
IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
$ ( NPROW.GT.1 ) ) THEN
IF( IROW1.EQ.IROW2 ) THEN
CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
$ A( ( ICOL1-1 )*LDA+IROW2 ),
$ LDA, UP, MYCOL )
END IF
END IF
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( NPROW.GT.1 ) ) THEN
IF( IROW1.EQ.IROW2 ) THEN
CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
$ A( ( ICOL1-1 )*LDA+IROW1 ),
$ LDA, DOWN, MYCOL )
END IF
END IF
END IF
170 CONTINUE
END IF
180 CONTINUE
*
DO 220 KI = 1, IBULGE
IF( KROW( KI ).GT.KP2ROW( KI ) )
$ GO TO 220
IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
$ ( DOWN.NE.ICURROW( KI ) ) )GO TO 220
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
IF( ( ISTART.EQ.ISTOP ) .OR.
$ ( MOD( ISTART-1, HBL ).GE.HBL-2 ) .OR.
$ ( ICURROW( KI ).NE.MYROW ) ) THEN
DO 210 K = ISTART, ISTOP
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
NR = MIN( 3, I-K+1 )
IF( ( NR.EQ.3 ) .AND. ( KROW( KI ).LE.
$ KP2ROW( KI ) ) ) THEN
IF( ( K.LT.ISTOP ) .AND.
$ ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
ELSE
IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
ITMP1 = MIN( K+4, I2 ) + 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
ITMP1 = MIN( K+3, I2 ) + 1
END IF
END IF
*
IROW1 = KROW( KI ) + K - ISTART
IROW2 = KP2ROW( KI ) + K - ISTART
CALL INFOG1L( ITMP1, HBL, NPCOL, MYCOL, 0,
$ ICOL1, ICOL2 )
ICOL2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
$ ( NPROW.GT.1 ) ) THEN
IF( IROW1.NE.IROW2 ) THEN
CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
$ WORK( IRBUF+1 ), 1, DOWN,
$ MYCOL )
T2 = T1*V2
T3 = T1*V3
DO 190 J = ICOL1, ICOL2
SUM = A( ( J-1 )*LDA+IROW1 ) +
$ V2*A( ( J-1 )*LDA+IROW1+1 ) +
$ V3*WORK( IRBUF+J-ICOL1+1 )
A( ( J-1 )*LDA+IROW1 ) = A( ( J-1 )*
$ LDA+IROW1 ) - SUM*T1
A( ( J-1 )*LDA+IROW1+1 ) = A( ( J-1 )*
$ LDA+IROW1+1 ) - SUM*T2
WORK( IRBUF+J-ICOL1+1 ) = WORK( IRBUF+
$ J-ICOL1+1 ) - SUM*T3
190 CONTINUE
CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
$ WORK( IRBUF+1 ), 1, DOWN,
$ MYCOL )
END IF
END IF
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( NPROW.GT.1 ) ) THEN
IF( IROW1.NE.IROW2 ) THEN
CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
$ WORK( IRBUF+1 ), 1, UP,
$ MYCOL )
T2 = T1*V2
T3 = T1*V3
DO 200 J = ICOL1, ICOL2
SUM = WORK( IRBUF+J-ICOL1+1 ) +
$ V2*A( ( J-1 )*LDA+IROW1 ) +
$ V3*A( ( J-1 )*LDA+IROW1+1 )
WORK( IRBUF+J-ICOL1+1 ) = WORK( IRBUF+
$ J-ICOL1+1 ) - SUM*T1
A( ( J-1 )*LDA+IROW1 ) = A( ( J-1 )*
$ LDA+IROW1 ) - SUM*T2
A( ( J-1 )*LDA+IROW1+1 ) = A( ( J-1 )*
$ LDA+IROW1+1 ) - SUM*T3
200 CONTINUE
CALL DGESD2D( CONTXT, 1, ICOL2-ICOL1+1,
$ WORK( IRBUF+1 ), 1, UP,
$ MYCOL )
END IF
END IF
END IF
210 CONTINUE
END IF
220 CONTINUE
*
DO 240 KI = 1, IBULGE
IF( KROW( KI ).GT.KP2ROW( KI ) )
$ GO TO 240
IF( ( MYROW.NE.ICURROW( KI ) ) .AND.
$ ( DOWN.NE.ICURROW( KI ) ) )GO TO 240
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
IF( ( ISTART.EQ.ISTOP ) .OR.
$ ( MOD( ISTART-1, HBL ).GE.HBL-2 ) .OR.
$ ( ICURROW( KI ).NE.MYROW ) ) THEN
DO 230 K = ISTART, ISTOP
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
NR = MIN( 3, I-K+1 )
IF( ( NR.EQ.3 ) .AND. ( KROW( KI ).LE.
$ KP2ROW( KI ) ) ) THEN
IF( ( K.LT.ISTOP ) .AND.
$ ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
ELSE
IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
ITMP1 = MIN( K2( KI )+1, I-1 ) + 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
ITMP1 = MIN( K+4, I2 ) + 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
ITMP1 = MIN( K+3, I2 ) + 1
END IF
END IF
*
IROW1 = KROW( KI ) + K - ISTART
IROW2 = KP2ROW( KI ) + K - ISTART
CALL INFOG1L( ITMP1, HBL, NPCOL, MYCOL, 0,
$ ICOL1, ICOL2 )
ICOL2 = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
$ ( NPROW.GT.1 ) ) THEN
IF( IROW1.EQ.IROW2 ) THEN
CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
$ A( ( ICOL1-1 )*LDA+IROW2 ),
$ LDA, UP, MYCOL )
END IF
END IF
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( NPROW.GT.1 ) ) THEN
IF( IROW1.EQ.IROW2 ) THEN
CALL DGERV2D( CONTXT, 1, ICOL2-ICOL1+1,
$ A( ( ICOL1-1 )*LDA+IROW1 ),
$ LDA, DOWN, MYCOL )
END IF
END IF
END IF
230 CONTINUE
END IF
240 CONTINUE
250 CONTINUE
*
* Now start major set of block COL reflections
*
DO 260 KI = 1, IBULGE
IF( ( MYCOL.NE.ICURCOL( KI ) ) .AND.
$ ( RIGHT.NE.ICURCOL( KI ) ) )GO TO 260
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
*
IF( ( ( MOD( ISTART-1, HBL ).LT.HBL-2 ) .OR. ( NPCOL.EQ.
$ 1 ) ) .AND. ( ICURCOL( KI ).EQ.MYCOL ) .AND.
$ ( I-ISTOP+1.GE.3 ) ) THEN
K = ISTART
IF( ( K.LT.ISTOP ) .AND. ( MOD( K-1,
$ HBL ).LT.HBL-2 ) ) THEN
ITMP1 = MIN( ISTART+1, I ) - 1
ELSE
IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
ITMP1 = MIN( K+3, I )
END IF
IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
ITMP1 = MAX( I1, K-1 ) - 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
ITMP1 = MAX( I1, K-2 ) - 1
END IF
END IF
*
ICOL1 = KCOL( KI )
CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, IROW1, IROW2 )
IROW2 = NUMROC( ITMP1, HBL, MYROW, 0, NPROW )
IF( IROW1.LE.IROW2 ) THEN
ITMP2 = IROW2
ELSE
ITMP2 = -1
END IF
CALL DLAREF( 'Col', A, LDA, WANTZ, Z, LDZ, .TRUE.,
$ ICOL1, ICOL1, ISTART, ISTOP, IROW1,
$ IROW2, LILOZ, LIHIZ, WORK( VECSIDX+1 ),
$ V2, V3, T1, T2, T3 )
K = ISTOP
IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
*
* Do from ITMP1+1 to MIN(K+3,I)
*
IF( MOD( K-1, HBL ).LT.HBL-3 ) THEN
IROW1 = ITMP2 + 1
IF( MOD( ( ITMP1 / HBL ), NPROW ).EQ.MYROW )
$ THEN
IF( ITMP2.GT.0 ) THEN
IROW2 = ITMP2 + MIN( K+3, I ) - ITMP1
ELSE
IROW2 = IROW1 - 1
END IF
ELSE
IROW2 = IROW1 - 1
END IF
ELSE
CALL INFOG1L( ITMP1+1, HBL, NPROW, MYROW, 0,
$ IROW1, IROW2 )
IROW2 = NUMROC( MIN( K+3, I ), HBL, MYROW, 0,
$ NPROW )
END IF
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
T2 = T1*V2
T3 = T1*V3
ICOL1 = KCOL( KI ) + ISTOP - ISTART
CALL DLAREF( 'Col', A, LDA, .FALSE., Z, LDZ,
$ .FALSE., ICOL1, ICOL1, ISTART, ISTOP,
$ IROW1, IROW2, LILOZ, LIHIZ,
$ WORK( VECSIDX+1 ), V2, V3, T1, T2,
$ T3 )
END IF
END IF
260 CONTINUE
*
DO 320 KI = 1, IBULGE
IF( KCOL( KI ).GT.KP2COL( KI ) )
$ GO TO 320
IF( ( MYCOL.NE.ICURCOL( KI ) ) .AND.
$ ( RIGHT.NE.ICURCOL( KI ) ) )GO TO 320
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
IF( MOD( ISTART-1, HBL ).GE.HBL-2 ) THEN
*
* INFO is found in a buffer
*
ISPEC = 1
ELSE
*
* All INFO is local
*
ISPEC = 0
END IF
*
DO 310 K = ISTART, ISTOP
*
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
NR = MIN( 3, I-K+1 )
IF( ( NR.EQ.3 ) .AND. ( KCOL( KI ).LE.KP2COL( KI ) ) )
$ THEN
*
IF( ( K.LT.ISTOP ) .AND.
$ ( MOD( K-1, HBL ).LT.HBL-2 ) ) THEN
ITMP1 = MIN( ISTART+1, I ) - 1
ELSE
IF( MOD( K-1, HBL ).LT.HBL-2 ) THEN
ITMP1 = MIN( K+3, I )
END IF
IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
ITMP1 = MAX( I1, K-1 ) - 1
END IF
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
ITMP1 = MAX( I1, K-2 ) - 1
END IF
END IF
ICOL1 = KCOL( KI ) + K - ISTART
ICOL2 = KP2COL( KI ) + K - ISTART
CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, IROW1,
$ IROW2 )
IROW2 = NUMROC( ITMP1, HBL, MYROW, 0, NPROW )
IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
$ ( NPCOL.GT.1 ) ) THEN
IF( ICOL1.EQ.ICOL2 ) THEN
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ A( ( ICOL1-1 )*LDA+IROW1 ),
$ LDA, MYROW, LEFT )
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ A( ( ICOL1-1 )*LDA+IROW1 ),
$ LDA, MYROW, LEFT )
ELSE
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ), IROW2-IROW1+1,
$ MYROW, RIGHT )
T2 = T1*V2
T3 = T1*V3
DO 270 J = IROW1, IROW2
SUM = A( ( ICOL1-1 )*LDA+J ) +
$ V2*A( ICOL1*LDA+J ) +
$ V3*WORK( ICBUF+J-IROW1+1 )
A( ( ICOL1-1 )*LDA+J ) = A( ( ICOL1-1 )*
$ LDA+J ) - SUM*T1
A( ICOL1*LDA+J ) = A( ICOL1*LDA+J ) -
$ SUM*T2
WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+J-
$ IROW1+1 ) - SUM*T3
270 CONTINUE
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ), IROW2-IROW1+1,
$ MYROW, RIGHT )
END IF
END IF
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( NPCOL.GT.1 ) ) THEN
IF( ICOL1.EQ.ICOL2 ) THEN
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ A( ( ICOL1-1 )*LDA+IROW1 ),
$ LDA, MYROW, RIGHT )
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ A( ( ICOL1-1 )*LDA+IROW1 ),
$ LDA, MYROW, RIGHT )
ELSE
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ), IROW2-IROW1+1,
$ MYROW, LEFT )
T2 = T1*V2
T3 = T1*V3
DO 280 J = IROW1, IROW2
SUM = WORK( ICBUF+J-IROW1+1 ) +
$ V2*A( ( ICOL1-1 )*LDA+J ) +
$ V3*A( ICOL1*LDA+J )
WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+J-
$ IROW1+1 ) - SUM*T1
A( ( ICOL1-1 )*LDA+J ) = A( ( ICOL1-1 )*
$ LDA+J ) - SUM*T2
A( ICOL1*LDA+J ) = A( ICOL1*LDA+J ) -
$ SUM*T3
280 CONTINUE
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ), IROW2-IROW1+1,
$ MYROW, LEFT )
END IF
END IF
*
* If we want Z and we haven't already done any Z
IF( ( WANTZ ) .AND. ( MOD( K-1,
$ HBL ).GE.HBL-2 ) .AND. ( NPCOL.GT.1 ) ) THEN
*
* Accumulate transformations in the matrix Z
*
IROW1 = LILOZ
IROW2 = LIHIZ
IF( MOD( K-1, HBL ).EQ.HBL-2 ) THEN
IF( ICOL1.EQ.ICOL2 ) THEN
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ Z( ( ICOL1-1 )*LDZ+IROW1 ),
$ LDZ, MYROW, LEFT )
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ Z( ( ICOL1-1 )*LDZ+IROW1 ),
$ LDZ, MYROW, LEFT )
ELSE
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ),
$ IROW2-IROW1+1, MYROW,
$ RIGHT )
T2 = T1*V2
T3 = T1*V3
ICOL1 = ( ICOL1-1 )*LDZ
DO 290 J = IROW1, IROW2
SUM = Z( ICOL1+J ) +
$ V2*Z( ICOL1+J+LDZ ) +
$ V3*WORK( ICBUF+J-IROW1+1 )
Z( J+ICOL1 ) = Z( J+ICOL1 ) - SUM*T1
Z( J+ICOL1+LDZ ) = Z( J+ICOL1+LDZ ) -
$ SUM*T2
WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+
$ J-IROW1+1 ) - SUM*T3
290 CONTINUE
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ),
$ IROW2-IROW1+1, MYROW,
$ RIGHT )
END IF
END IF
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
IF( ICOL1.EQ.ICOL2 ) THEN
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ Z( ( ICOL1-1 )*LDZ+IROW1 ),
$ LDZ, MYROW, RIGHT )
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ Z( ( ICOL1-1 )*LDZ+IROW1 ),
$ LDZ, MYROW, RIGHT )
ELSE
CALL DGERV2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ),
$ IROW2-IROW1+1, MYROW, LEFT )
T2 = T1*V2
T3 = T1*V3
ICOL1 = ( ICOL1-1 )*LDZ
DO 300 J = IROW1, IROW2
SUM = WORK( ICBUF+J-IROW1+1 ) +
$ V2*Z( J+ICOL1 ) +
$ V3*Z( J+ICOL1+LDZ )
WORK( ICBUF+J-IROW1+1 ) = WORK( ICBUF+
$ J-IROW1+1 ) - SUM*T1
Z( J+ICOL1 ) = Z( J+ICOL1 ) - SUM*T2
Z( J+ICOL1+LDZ ) = Z( J+ICOL1+LDZ ) -
$ SUM*T3
300 CONTINUE
CALL DGESD2D( CONTXT, IROW2-IROW1+1, 1,
$ WORK( ICBUF+1 ),
$ IROW2-IROW1+1, MYROW, LEFT )
END IF
END IF
END IF
IF( ICURCOL( KI ).EQ.MYCOL ) THEN
IF( ( ISPEC.EQ.0 ) .OR. ( NPCOL.EQ.1 ) ) THEN
LOCALK2( KI ) = LOCALK2( KI ) + 1
END IF
ELSE
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( ICURCOL( KI ).EQ.RIGHT ) ) THEN
IF( K.GT.M ) THEN
LOCALK2( KI ) = LOCALK2( KI ) + 2
ELSE
LOCALK2( KI ) = LOCALK2( KI ) + 1
END IF
END IF
IF( ( MOD( K-1, HBL ).EQ.HBL-2 ) .AND.
$ ( I-K.EQ.2 ) .AND. ( ICURCOL( KI ).EQ.
$ RIGHT ) ) THEN
LOCALK2( KI ) = LOCALK2( KI ) + 2
END IF
END IF
END IF
310 CONTINUE
320 CONTINUE
*
* Column work done
*
330 CONTINUE
*
* Now do NR=2 work
*
DO 410 KI = 1, IBULGE
ISTART = MAX( K1( KI ), M )
ISTOP = MIN( K2( KI ), I-1 )
IF( MOD( ISTART-1, HBL ).GE.HBL-2 ) THEN
*
* INFO is found in a buffer
*
ISPEC = 1
ELSE
*
* All INFO is local
*
ISPEC = 0
END IF
*
DO 400 K = ISTART, ISTOP
*
V2 = WORK( VECSIDX+( K-1 )*3+1 )
V3 = WORK( VECSIDX+( K-1 )*3+2 )
T1 = WORK( VECSIDX+( K-1 )*3+3 )
NR = MIN( 3, I-K+1 )
IF( NR.EQ.2 ) THEN
IF ( ICURROW( KI ).EQ.MYROW ) THEN
T2 = T1*V2
END IF
IF ( ICURCOL( KI ).EQ.MYCOL ) THEN
T2 = T1*V2
END IF
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
CALL INFOG1L( K, HBL, NPCOL, MYCOL, 0, LILOH,
$ LIHIH )
LIHIH = NUMROC( I2, HBL, MYCOL, 0, NPCOL )
CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, ITMP2,
$ ITMP1 )
ITMP1 = NUMROC( K+1, HBL, MYROW, 0, NPROW )
IF( ICURROW( KI ).EQ.MYROW ) THEN
IF( ( ISPEC.EQ.0 ) .OR. ( NPROW.EQ.1 ) .OR.
$ ( MOD( K-1, HBL ).EQ.HBL-2 ) ) THEN
ITMP1 = ITMP1 - 1
DO 340 J = ( LILOH-1 )*LDA,
$ ( LIHIH-1 )*LDA, LDA
SUM = A( ITMP1+J ) + V2*A( ITMP1+1+J )
A( ITMP1+J ) = A( ITMP1+J ) - SUM*T1
A( ITMP1+1+J ) = A( ITMP1+1+J ) - SUM*T2
340 CONTINUE
ELSE
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
CALL DGERV2D( CONTXT, 1, LIHIH-LILOH+1,
$ WORK( IRBUF+1 ), 1, UP,
$ MYCOL )
DO 350 J = LILOH, LIHIH
SUM = WORK( IRBUF+J-LILOH+1 ) +
$ V2*A( ( J-1 )*LDA+ITMP1 )
WORK( IRBUF+J-LILOH+1 ) = WORK( IRBUF+
$ J-LILOH+1 ) - SUM*T1
A( ( J-1 )*LDA+ITMP1 ) = A( ( J-1 )*
$ LDA+ITMP1 ) - SUM*T2
350 CONTINUE
CALL DGESD2D( CONTXT, 1, LIHIH-LILOH+1,
$ WORK( IRBUF+1 ), 1, UP,
$ MYCOL )
END IF
END IF
ELSE
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( ICURROW( KI ).EQ.DOWN ) ) THEN
CALL DGESD2D( CONTXT, 1, LIHIH-LILOH+1,
$ A( ( LILOH-1 )*LDA+ITMP1 ),
$ LDA, DOWN, MYCOL )
CALL DGERV2D( CONTXT, 1, LIHIH-LILOH+1,
$ A( ( LILOH-1 )*LDA+ITMP1 ),
$ LDA, DOWN, MYCOL )
END IF
END IF
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to MIN(K+3,I).
*
CALL INFOG1L( I1, HBL, NPROW, MYROW, 0, LILOH,
$ LIHIH )
LIHIH = NUMROC( I, HBL, MYROW, 0, NPROW )
*
IF( ICURCOL( KI ).EQ.MYCOL ) THEN
* LOCAL A(LILOZ:LIHIZ,LOCALK2:LOCALK2+2)
IF( ( ISPEC.EQ.0 ) .OR. ( NPCOL.EQ.1 ) .OR.
$ ( MOD( K-1, HBL ).EQ.HBL-2 ) ) THEN
CALL INFOG1L( K, HBL, NPCOL, MYCOL, 0, ITMP1,
$ ITMP2 )
ITMP2 = NUMROC( K+1, HBL, MYCOL, 0, NPCOL )
DO 360 J = LILOH, LIHIH
SUM = A( ( ITMP1-1 )*LDA+J ) +
$ V2*A( ITMP1*LDA+J )
A( ( ITMP1-1 )*LDA+J ) = A( ( ITMP1-1 )*
$ LDA+J ) - SUM*T1
A( ITMP1*LDA+J ) = A( ITMP1*LDA+J ) -
$ SUM*T2
360 CONTINUE
ELSE
ITMP1 = LOCALK2( KI )
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
CALL DGERV2D( CONTXT, LIHIH-LILOH+1, 1,
$ WORK( ICBUF+1 ),
$ LIHIH-LILOH+1, MYROW, LEFT )
DO 370 J = LILOH, LIHIH
SUM = WORK( ICBUF+J ) +
$ V2*A( ( ITMP1-1 )*LDA+J )
WORK( ICBUF+J ) = WORK( ICBUF+J ) -
$ SUM*T1
A( ( ITMP1-1 )*LDA+J )
$ = A( ( ITMP1-1 )*LDA+J ) - SUM*T2
370 CONTINUE
CALL DGESD2D( CONTXT, LIHIH-LILOH+1, 1,
$ WORK( ICBUF+1 ),
$ LIHIH-LILOH+1, MYROW, LEFT )
END IF
END IF
ELSE
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( ICURCOL( KI ).EQ.RIGHT ) ) THEN
ITMP1 = KCOL( KI )
CALL DGESD2D( CONTXT, LIHIH-LILOH+1, 1,
$ A( ( ITMP1-1 )*LDA+LILOH ),
$ LDA, MYROW, RIGHT )
CALL INFOG1L( K, HBL, NPCOL, MYCOL, 0, ITMP1,
$ ITMP2 )
ITMP2 = NUMROC( K+1, HBL, MYCOL, 0, NPCOL )
CALL DGERV2D( CONTXT, LIHIH-LILOH+1, 1,
$ A( ( ITMP1-1 )*LDA+LILOH ),
$ LDA, MYROW, RIGHT )
END IF
END IF
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
IF( ICURCOL( KI ).EQ.MYCOL ) THEN
* LOCAL Z(LILOZ:LIHIZ,LOCALK2:LOCALK2+2)
IF( ( ISPEC.EQ.0 ) .OR. ( NPCOL.EQ.1 ) .OR.
$ ( MOD( K-1, HBL ).EQ.HBL-2 ) ) THEN
ITMP1 = KCOL( KI ) + K - ISTART
ITMP1 = ( ITMP1-1 )*LDZ
DO 380 J = LILOZ, LIHIZ
SUM = Z( J+ITMP1 ) +
$ V2*Z( J+ITMP1+LDZ )
Z( J+ITMP1 ) = Z( J+ITMP1 ) - SUM*T1
Z( J+ITMP1+LDZ ) = Z( J+ITMP1+LDZ ) -
$ SUM*T2
380 CONTINUE
LOCALK2( KI ) = LOCALK2( KI ) + 1
ELSE
ITMP1 = LOCALK2( KI )
* IF WE ACTUALLY OWN COLUMN K
IF( MOD( K-1, HBL ).EQ.HBL-1 ) THEN
CALL DGERV2D( CONTXT, LIHIZ-LILOZ+1, 1,
$ WORK( ICBUF+1 ), LDZ,
$ MYROW, LEFT )
ITMP1 = ( ITMP1-1 )*LDZ
DO 390 J = LILOZ, LIHIZ
SUM = WORK( ICBUF+J ) +
$ V2*Z( J+ITMP1 )
WORK( ICBUF+J ) = WORK( ICBUF+J ) -
$ SUM*T1
Z( J+ITMP1 ) = Z( J+ITMP1 ) - SUM*T2
390 CONTINUE
CALL DGESD2D( CONTXT, LIHIZ-LILOZ+1, 1,
$ WORK( ICBUF+1 ), LDZ,
$ MYROW, LEFT )
LOCALK2( KI ) = LOCALK2( KI ) + 1
END IF
END IF
ELSE
*
* NO WORK BUT NEED TO UPDATE ANYWAY????
*
IF( ( MOD( K-1, HBL ).EQ.HBL-1 ) .AND.
$ ( ICURCOL( KI ).EQ.RIGHT ) ) THEN
ITMP1 = KCOL( KI )
ITMP1 = ( ITMP1-1 )*LDZ
CALL DGESD2D( CONTXT, LIHIZ-LILOZ+1, 1,
$ Z( LILOZ+ITMP1 ), LDZ,
$ MYROW, RIGHT )
CALL DGERV2D( CONTXT, LIHIZ-LILOZ+1, 1,
$ Z( LILOZ+ITMP1 ), LDZ,
$ MYROW, RIGHT )
LOCALK2( KI ) = LOCALK2( KI ) + 1
END IF
END IF
END IF
END IF
400 CONTINUE
*
* Adjust local information for this bulge
*
IF( NPROW.EQ.1 ) THEN
KROW( KI ) = KROW( KI ) + K2( KI ) - K1( KI ) + 1
KP2ROW( KI ) = KP2ROW( KI ) + K2( KI ) - K1( KI ) + 1
END IF
IF( ( MOD( K1( KI )-1, HBL ).LT.HBL-2 ) .AND.
$ ( ICURROW( KI ).EQ.MYROW ) .AND. ( NPROW.GT.1 ) )
$ THEN
KROW( KI ) = KROW( KI ) + K2( KI ) - K1( KI ) + 1
END IF
IF( ( MOD( K2( KI ), HBL ).LT.HBL-2 ) .AND.
$ ( ICURROW( KI ).EQ.MYROW ) .AND. ( NPROW.GT.1 ) )
$ THEN
KP2ROW( KI ) = KP2ROW( KI ) + K2( KI ) - K1( KI ) + 1
END IF
IF( ( MOD( K1( KI )-1, HBL ).GE.HBL-2 ) .AND.
$ ( ( MYROW.EQ.ICURROW( KI ) ) .OR. ( DOWN.EQ.
$ ICURROW( KI ) ) ) .AND. ( NPROW.GT.1 ) ) THEN
CALL INFOG1L( K2( KI )+1, HBL, NPROW, MYROW, 0,
$ KROW( KI ), ITMP2 )
ITMP2 = NUMROC( N, HBL, MYROW, 0, NPROW )
END IF
IF( ( MOD( K2( KI ), HBL ).GE.HBL-2 ) .AND.
$ ( ( MYROW.EQ.ICURROW( KI ) ) .OR. ( UP.EQ.
$ ICURROW( KI ) ) ) .AND. ( NPROW.GT.1 ) ) THEN
CALL INFOG1L( 1, HBL, NPROW, MYROW, 0, ITMP2,
$ KP2ROW( KI ) )
KP2ROW( KI ) = NUMROC( K2( KI )+3, HBL, MYROW, 0,
$ NPROW )
END IF
IF( NPCOL.EQ.1 ) THEN
KCOL( KI ) = KCOL( KI ) + K2( KI ) - K1( KI ) + 1
KP2COL( KI ) = KP2COL( KI ) + K2( KI ) - K1( KI ) + 1
END IF
IF( ( MOD( K1( KI )-1, HBL ).LT.HBL-2 ) .AND.
$ ( ICURCOL( KI ).EQ.MYCOL ) .AND. ( NPCOL.GT.1 ) )
$ THEN
KCOL( KI ) = KCOL( KI ) + K2( KI ) - K1( KI ) + 1
END IF
IF( ( MOD( K2( KI ), HBL ).LT.HBL-2 ) .AND.
$ ( ICURCOL( KI ).EQ.MYCOL ) .AND. ( NPCOL.GT.1 ) )
$ THEN
KP2COL( KI ) = KP2COL( KI ) + K2( KI ) - K1( KI ) + 1
END IF
IF( ( MOD( K1( KI )-1, HBL ).GE.HBL-2 ) .AND.
$ ( ( MYCOL.EQ.ICURCOL( KI ) ) .OR. ( RIGHT.EQ.
$ ICURCOL( KI ) ) ) .AND. ( NPCOL.GT.1 ) ) THEN
CALL INFOG1L( K2( KI )+1, HBL, NPCOL, MYCOL, 0,
$ KCOL( KI ), ITMP2 )
ITMP2 = NUMROC( N, HBL, MYCOL, 0, NPCOL )
END IF
IF( ( MOD( K2( KI ), HBL ).GE.HBL-2 ) .AND.
$ ( ( MYCOL.EQ.ICURCOL( KI ) ) .OR. ( LEFT.EQ.
$ ICURCOL( KI ) ) ) .AND. ( NPCOL.GT.1 ) ) THEN
CALL INFOG1L( 1, HBL, NPCOL, MYCOL, 0, ITMP2,
$ KP2COL( KI ) )
KP2COL( KI ) = NUMROC( K2( KI )+3, HBL, MYCOL, 0,
$ NPCOL )
END IF
K1( KI ) = K2( KI ) + 1
ISTOP = MIN( K1( KI )+ROTN-MOD( K1( KI ), ROTN ), I-2 )
ISTOP = MIN( ISTOP, K1( KI )+HBL-3-
$ MOD( K1( KI )-1, HBL ) )
ISTOP = MIN( ISTOP, I2-2 )
ISTOP = MAX( ISTOP, K1( KI ) )
* ISTOP = MIN( ISTOP , I-1 )
K2( KI ) = ISTOP
IF( K1( KI ).EQ.ISTOP ) THEN
IF( ( MOD( ISTOP-1, HBL ).EQ.HBL-2 ) .AND.
$ ( I-ISTOP.GT.1 ) ) THEN
*
* Next step switches rows & cols
*
ICURROW( KI ) = MOD( ICURROW( KI )+1, NPROW )
ICURCOL( KI ) = MOD( ICURCOL( KI )+1, NPCOL )
END IF
END IF
410 CONTINUE
IF( K2( IBULGE ).LE.I-1 )
$ GO TO 40
END IF
*
420 CONTINUE
*
* Failure to converge in remaining number of iterations
*
INFO = I
RETURN
*
430 CONTINUE
*
IF( L.EQ.I ) THEN
*
* H(I,I-1) is negligible: one eigenvalue has converged.
*
CALL INFOG2L( I, I, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW,
$ ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
WR( I ) = A( ( ICOL-1 )*LDA+IROW )
ELSE
WR( I ) = ZERO
END IF
WI( I ) = ZERO
ELSE IF( L.EQ.I-1 ) THEN
*
* H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
*
CALL PDELGET( 'All', ' ', H11, A, L, L, DESCA )
CALL PDELGET( 'All', ' ', H21, A, I, L, DESCA )
CALL PDELGET( 'All', ' ', H12, A, L, I, DESCA )
CALL PDELGET( 'All', ' ', H22, A, I, I, DESCA )
CALL DLANV2( H11, H12, H21, H22, WR( L ), WI( L ), WR( I ),
$ WI( I ), CS, SN )
IF( NODE .NE. 0 ) THEN
WR( L ) = ZERO
WR( I ) = ZERO
WI( L ) = ZERO
WI( I ) = ZERO
ENDIF
ELSE
*
* Find the eigenvalues in H(L:I,L:I), L < I-1
*
JBLK = I - L + 1
IF( JBLK.LE.2*IBLK ) THEN
CALL PDLACP3( I-L+1, L, A, DESCA, S1, 2*IBLK, 0, 0, 0 )
CALL DLAHQR( .FALSE., .FALSE., JBLK, 1, JBLK, S1, 2*IBLK,
$ WR( L ), WI( L ), 1, JBLK, Z, LDZ, IERR )
IF( NODE.NE.0 ) THEN
*
* Erase the eigenvalues
*
DO 440 K = L, I
WR( K ) = ZERO
WI( K ) = ZERO
440 CONTINUE
END IF
END IF
END IF
*
* Decrement number of remaining iterations, and return to start of
* the main loop with new value of I.
*
ITN = ITN - ITS
IF( M.EQ.L-10 ) THEN
I = L - 1
ELSE
I = M
END IF
* I = L - 1
GO TO 10
*
450 CONTINUE
CALL DGSUM2D( CONTXT, 'All', ' ', N, 1, WR, N, -1, -1 )
CALL DGSUM2D( CONTXT, 'All', ' ', N, 1, WI, N, -1, -1 )
RETURN
*
* END OF PDLAHQR
*
END
|