File: pdlaiect.c

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (309 lines) | stat: -rw-r--r-- 9,074 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309


/* ---------------------------------------------------------------------
*
*  -- ScaLAPACK routine (version 1.5) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*  ---------------------------------------------------------------------
*/

/*
 * Include Files
 */
#include "pxsyevx.h"
#include "pblas.h"
#include <stdio.h>
#include <math.h>
#define  proto(x)	()


void pdlasnbt_( Int *ieflag )
{
/* 
*
*  Purpose
*  ======= 
*
*  pdalsnbt finds the position of the signbit of a double
*  double precision floating point number. This routine assumes IEEE
*  arithmetic, and hence, tests only the 32nd and 64th bits as
*  possibilities for the sign bit.
*
*  Note : For this release, we assume that sizeof(int) is 4 bytes.
*
*  Note : If a compile time flag (NO_IEEE) indicates that the
*  machine does not have IEEE arithmetic, IEFLAG = 0 is returned.
*
*  Arguments
*  =========
*
*  IEFLAG   (output) INTEGER
*           This indicates the position of the signbit of any double
*           precision floating point number.
*           IEFLAG = 0 if the compile time flag, NO_IEEE, indicates
*           that the machine does not have IEEE  arithmetic, or if
*           sizeof(int) is different from 4 bytes.
*           IEFLAG = 1 indicates that the sign bit is the 32nd
*           bit ( Big Endian ).
*           IEFLAG = 2 indicates that the sign bit is the 64th
*           bit ( Little Endian ).
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   double x;
   Int         negone=-1, errornum;
   unsigned Int *ix; 
/* ..
*  .. Executable Statements ..
*/

#ifdef NO_IEEE
   *ieflag = 0;
#else
   if(sizeof(Int) != 4){
      *ieflag = 0;
      return;
   }
   x = (double) -1.0;
   ix = (unsigned Int *) &x;
   if(( *ix == 0xbff00000) && ( *(ix+1) == 0x0) ) 
   {
      *ieflag = 1;
   } else if(( *(ix+1) == 0xbff00000) && ( *ix == 0x0) ) {
      *ieflag = 2;
   } else {
      *ieflag = 0; 
   }
#endif
}

void pdlaiectb_( double *sigma, Int *n, double *d, Int *count )
{
/* 
*
*  Purpose
*  ======= 
*
*  pdlaiectb computes the number of negative eigenvalues of (A- SIGMA I).
*  This implementation of the Sturm Sequence loop exploits IEEE Arithmetic
*  and has no conditionals in the innermost loop. To extract the signbit,
*  this routine assumes that the double precision word is stored in
*  "Big Endian" word order, i.e, the signbit is assumed to be bit 32.
*
*  Note that all arguments are call-by-reference so that this routine
*  can be directly called from Fortran code.
*
*  This is a ScaLAPACK internal subroutine and arguments are not
*  checked for unreasonable values.
*
*  Arguments
*  =========
*
*  SIGMA    (input) DOUBLE PRECISION
*           The shift. pdlaiectb finds the number of eigenvalues
*           less than equal to SIGMA.
*
*  N        (input) INTEGER
*           The order of the tridiagonal matrix T. N >= 1.
*
*  D        (input) DOUBLE PRECISION array, dimension (2*N - 1)
*           Contains the diagonals and the squares of the off-diagonal
*           elements of the tridiagonal matrix T. These elements are
*           assumed to be interleaved in memory for better cache
*           performance. The diagonal entries of T are in the entries
*           D(1),D(3),...,D(2*N-1), while the squares of the off-diagonal
*           entries are D(2),D(4),...,D(2*N-2). To avoid overflow, the
*           matrix must be scaled so that its largest entry is no greater
*           than overflow**(1/2) * underflow**(1/4) in absolute value,
*           and for greatest accuracy, it should not be much smaller
*           than that.
*
*  COUNT    (output) INTEGER
*           The count of the number of eigenvalues of T less than or
*           equal to SIGMA.
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   double      lsigma, tmp, *pd, *pe2;
   Int         i;
/* ..
*  .. Executable Statements ..
*/

   lsigma = *sigma;
   pd = d; pe2 = d+1;
   tmp = *pd - lsigma; pd += 2;
   *count = (*((Int *)&tmp) >> 31) & 1;
   for(i = 1;i < *n;i++){
      tmp = *pd - *pe2/tmp - lsigma;
      pd += 2; pe2 += 2;
      *count += ((*((Int *)&tmp)) >> 31) & 1;
   }
}

void pdlaiectl_( double *sigma, Int *n, double *d, Int *count )
{
/* 
*
*  Purpose
*  ======= 
*
*  pdlaiectl computes the number of negative eigenvalues of (A- SIGMA I).
*  This implementation of the Sturm Sequence loop exploits IEEE Arithmetic
*  and has no conditionals in the innermost loop. To extract the signbit,
*  this routine assumes that the double precision word is stored in
*  "Little Endian" word order, i.e, the signbit is assumed to be bit 64.
*
*  Note that all arguments are call-by-reference so that this routine
*  can be directly called from Fortran code.
*
*  This is a ScaLAPACK internal subroutine and arguments are not
*  checked for unreasonable values.
*
*  Arguments
*  =========
*
*  SIGMA    (input) DOUBLE PRECISION
*           The shift. pdlaiectl finds the number of eigenvalues
*           less than equal to SIGMA.
*
*  N        (input) INTEGER
*           The order of the tridiagonal matrix T. N >= 1.
*
*  D        (input) DOUBLE PRECISION array, dimension (2*N - 1)
*           Contains the diagonals and the squares of the off-diagonal
*           elements of the tridiagonal matrix T. These elements are
*           assumed to be interleaved in memory for better cache
*           performance. The diagonal entries of T are in the entries
*           D(1),D(3),...,D(2*N-1), while the squares of the off-diagonal
*           entries are D(2),D(4),...,D(2*N-2). To avoid overflow, the
*           matrix must be scaled so that its largest entry is no greater
*           than overflow**(1/2) * underflow**(1/4) in absolute value,
*           and for greatest accuracy, it should not be much smaller
*           than that.
*
*  COUNT    (output) INTEGER
*           The count of the number of eigenvalues of T less than or
*           equal to SIGMA.
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   double      lsigma, tmp, *pd, *pe2;
   Int         i;
/* ..
*  .. Executable Statements ..
*/

   lsigma = *sigma;
   pd = d; pe2 = d+1;
   tmp = *pd - lsigma; pd += 2;
   *count = (*(((Int *)&tmp)+1) >> 31) & 1;
   for(i = 1;i < *n;i++){
      tmp = *pd - *pe2/tmp - lsigma;
      pd += 2; pe2 += 2;
      *count += (*(((Int *)&tmp)+1) >> 31) & 1;
   }
}

void pdlachkieee_( Int *isieee, double *rmax, double *rmin )
{
/* 
*
*  Purpose
*  ======= 
*
*  pdlachkieee performs a simple check to make sure that the features
*  of the IEEE standard that we rely on are implemented.  In some
*  implementations, pdlachkieee may not return.
*
*  Note that all arguments are call-by-reference so that this routine
*  can be directly called from Fortran code.
*
*  This is a ScaLAPACK internal subroutine and arguments are not
*  checked for unreasonable values.
*
*  Arguments
*  =========
*
*  ISIEEE   (local output) INTEGER
*           On exit, ISIEEE = 1 implies that all the features of the
*           IEEE standard that we rely on are implemented.
*           On exit, ISIEEE = 0 implies that some the features of the
*           IEEE standard that we rely on are missing.
*
*  RMAX     (local input) DOUBLE PRECISION
*           The overflow threshold ( = DLAMCH('O') ).
*
*  RMIN     (local input) DOUBLE PRECISION
*           The underflow threshold ( = DLAMCH('U') ).
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   double x, pinf, pzero, ninf, nzero;
   Int         ieflag, *ix, sbit1, sbit2, negone=-1, errornum;
/* ..
*  .. Executable Statements ..
*/

   pdlasnbt_( &ieflag );

   pinf = *rmax / *rmin;
   pzero = 1.0 / pinf;
   pinf = 1.0 / pzero;

   if( pzero != 0.0 ){
      printf("pzero = %g should be zero\n",pzero);
      *isieee = 0; 
      return ;
   }
   if( ieflag == 1 ){
      sbit1 = (*((Int *)&pzero) >> 31) & 1;
      sbit2 = (*((Int *)&pinf) >> 31) & 1;
   }else if(ieflag == 2){
      sbit1 = (*(((Int *)&pzero)+1) >> 31) & 1;
      sbit2 = (*(((Int *)&pinf)+1) >> 31) & 1;
   }
   if( sbit1 == 1 ){
      printf("Sign of positive infinity is incorrect\n");
      *isieee = 0;
   }
   if( sbit2 == 1 ){
      printf("Sign of positive zero is incorrect\n");
      *isieee = 0;
   }

   ninf = -pinf;
   nzero = 1.0 / ninf;
   ninf = 1.0 / nzero;

   if( nzero != 0.0 ){
      printf("nzero = %g should be zero\n",nzero);
      *isieee = 0;
   }
   if( ieflag == 1 ){
      sbit1 = (*((Int *)&nzero) >> 31) & 1;
      sbit2 = (*((Int *)&ninf) >> 31) & 1;
   }else if(ieflag == 2){
      sbit1 = (*(((Int *)&nzero)+1) >> 31) & 1;
      sbit2 = (*(((Int *)&ninf)+1) >> 31) & 1;
   }
   if( sbit1 == 0 ){
      printf("Sign of negative infinity is incorrect\n");
      *isieee = 0;
   }
   if( sbit2 == 0 ){
      printf("Sign of negative zero is incorrect\n");
      *isieee = 0;
   }
}