1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
DOUBLE PRECISION FUNCTION PDLANSY( NORM, UPLO, N, A, IA, JA,
$ DESCA, WORK )
IMPLICIT NONE
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER IA, JA, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PDLANSY returns the value of the one norm, or the Frobenius norm,
* or the infinity norm, or the element of largest absolute value of a
* real symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
* PDLANSY returns the value
*
* ( max(abs(A(i,j))), NORM = 'M' or 'm' with IA <= i <= IA+N-1,
* ( and JA <= j <= JA+N-1,
* (
* ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
* (
* ( normI( sub( A ) ), NORM = 'I' or 'i'
* (
* ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* NORM (global input) CHARACTER
* Specifies the value to be returned in PDLANSY as described
* above.
*
* UPLO (global input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* symmetric matrix sub( A ) is to be referenced.
* = 'U': Upper triangular part of sub( A ) is referenced,
* = 'L': Lower triangular part of sub( A ) is referenced.
*
* N (global input) INTEGER
* The number of rows and columns to be operated on i.e the
* number of rows and columns of the distributed submatrix
* sub( A ). When N = 0, PDLANSY is set to zero. N >= 0.
*
* A (local input) DOUBLE PRECISION pointer into the local memory
* to an array of dimension (LLD_A, LOCc(JA+N-1)) containing the
* local pieces of the symmetric distributed matrix sub( A ).
* If UPLO = 'U', the leading N-by-N upper triangular part of
* sub( A ) contains the upper triangular matrix which norm is
* to be computed, and the strictly lower triangular part of
* this matrix is not referenced. If UPLO = 'L', the leading
* N-by-N lower triangular part of sub( A ) contains the lower
* triangular matrix which norm is to be computed, and the
* strictly upper triangular part of sub( A ) is not referenced.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WORK (local workspace) DOUBLE PRECISION array dimension (LWORK)
* LWORK >= 0 if NORM = 'M' or 'm' (not referenced),
* 2*Nq0+Np0+LDW if NORM = '1', 'O', 'o', 'I' or 'i',
* where LDW is given by:
* IF( NPROW.NE.NPCOL ) THEN
* LDW = MB_A*CEIL(CEIL(Np0/MB_A)/(LCM/NPROW))
* ELSE
* LDW = 0
* END IF
* 0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
*
* where LCM is the least common multiple of NPROW and NPCOL
* LCM = ILCM( NPROW, NPCOL ) and CEIL denotes the ceiling
* operation (ICEIL).
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* Np0 = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* ICEIL, ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IAROW, IACOL, IB, ICOFF, ICTXT, ICURCOL,
$ ICURROW, II, IIA, IN, IROFF, ICSR, ICSR0,
$ IOFFA, IRSC, IRSC0, IRSR, IRSR0, JJ, JJA, K,
$ LDA, LL, MYCOL, MYROW, NP, NPCOL, NPROW, NQ
DOUBLE PRECISION SUM, VALUE
* ..
* .. Local Arrays ..
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DAXPY, DCOMBSSQ,
$ DGAMX2D, DGSUM2D, DGEBR2D,
$ DGEBS2D, DLASSQ, PDCOL2ROW,
$ PDTREECOMB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, IDAMAX, NUMROC
EXTERNAL ICEIL, IDAMAX, LSAME, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Get grid parameters and local indexes.
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IIA, JJA, IAROW, IACOL )
*
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
ICSR = 1
IRSR = ICSR + NQ
IRSC = IRSR + NQ
IF( MYROW.EQ.IAROW ) THEN
IRSC0 = IRSC + IROFF
NP = NP - IROFF
ELSE
IRSC0 = IRSC
END IF
IF( MYCOL.EQ.IACOL ) THEN
ICSR0 = ICSR + ICOFF
IRSR0 = IRSR + ICOFF
NQ = NQ - ICOFF
ELSE
ICSR0 = ICSR
IRSR0 = IRSR
END IF
IN = MIN( ICEIL( IA, DESCA( MB_ ) ) * DESCA( MB_ ), IA+N-1 )
LDA = DESCA( LLD_ )
*
* If the matrix is symmetric, we address only a triangular portion
* of the matrix. A sum of row (column) i of the complete matrix
* can be obtained by adding along row i and column i of the the
* triangular matrix, stopping/starting at the diagonal, which is
* the point of reflection. The pictures below demonstrate this.
* In the following code, the row sums created by --- rows below are
* refered to as ROWSUMS, and the column sums shown by | are refered
* to as COLSUMS. Infinity-norm = 1-norm = ROWSUMS+COLSUMS.
*
* UPLO = 'U' UPLO = 'L'
* ____i______ ___________
* |\ | | |\ |
* | \ | | | \ |
* | \ | | | \ |
* | \|------| i i|---\ |
* | \ | | |\ |
* | \ | | | \ |
* | \ | | | \ |
* | \ | | | \ |
* | \ | | | \ |
* | \ | | | \ |
* |__________\| |___|______\|
* i
*
* II, JJ : local indices into array A
* ICURROW : process row containing diagonal block
* ICURCOL : process column containing diagonal block
* IRSC0 : pointer to part of work used to store the ROWSUMS while
* they are stored along a process column
* IRSR0 : pointer to part of work used to store the ROWSUMS after
* they have been transposed to be along a process row
*
II = IIA
JJ = JJA
*
IF( N.EQ.0 ) THEN
*
VALUE = ZERO
*
************************************************************************
* max norm
*
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Handle first block separately
*
IB = IN-IA+1
*
* Find COLMAXS
*
IF( MYCOL.EQ.IACOL ) THEN
DO 20 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
IF( II.GT.IIA ) THEN
DO 10 LL = IIA, II-1
VALUE = MAX( VALUE, ABS( A( LL+K ) ) )
10 CONTINUE
END IF
IF( MYROW.EQ.IAROW )
$ II = II + 1
20 CONTINUE
*
* Reset local indices so we can find ROWMAXS
*
IF( MYROW.EQ.IAROW )
$ II = II - IB
*
END IF
*
* Find ROWMAXS
*
IF( MYROW.EQ.IAROW ) THEN
DO 40 K = II, II+IB-1
IF( JJ.LE.JJA+NQ-1 ) THEN
DO 30 LL = (JJ-1)*LDA, (JJA+NQ-2)*LDA, LDA
VALUE = MAX( VALUE, ABS( A( K+LL ) ) )
30 CONTINUE
END IF
IF( MYCOL.EQ.IACOL )
$ JJ = JJ + 1
40 CONTINUE
II = II + IB
ELSE IF( MYCOL.EQ.IACOL ) THEN
JJ = JJ + IB
END IF
*
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over the remaining rows/columns of the matrix.
*
DO 90 I = IN+1, IA+N-1, DESCA( MB_ )
IB = MIN( DESCA( MB_ ), IA+N-I )
*
* Find COLMAXS
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 60 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
IF( II.GT.IIA ) THEN
DO 50 LL = IIA, II-1
VALUE = MAX( VALUE, ABS( A( LL+K ) ) )
50 CONTINUE
END IF
IF( MYROW.EQ.ICURROW )
$ II = II + 1
60 CONTINUE
*
* Reset local indices so we can find ROWMAXS
*
IF( MYROW.EQ.ICURROW )
$ II = II - IB
END IF
*
* Find ROWMAXS
*
IF( MYROW.EQ.ICURROW ) THEN
DO 80 K = II, II+IB-1
IF( JJ.LE.JJA+NQ-1 ) THEN
DO 70 LL = (JJ-1)*LDA, (JJA+NQ-2)*LDA, LDA
VALUE = MAX( VALUE, ABS( A( K+LL ) ) )
70 CONTINUE
END IF
IF( MYCOL.EQ.ICURCOL )
$ JJ = JJ + 1
80 CONTINUE
II = II + IB
ELSE IF( MYCOL.EQ.ICURCOL ) THEN
JJ = JJ + IB
END IF
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
90 CONTINUE
*
ELSE
*
* Handle first block separately
*
IB = IN-IA+1
*
* Find COLMAXS
*
IF( MYCOL.EQ.IACOL ) THEN
DO 110 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
IF( II.LE.IIA+NP-1 ) THEN
DO 100 LL = II, IIA+NP-1
VALUE = MAX( VALUE, ABS( A( LL+K ) ) )
100 CONTINUE
END IF
IF( MYROW.EQ.IAROW )
$ II = II + 1
110 CONTINUE
*
* Reset local indices so we can find ROWMAXS
*
IF( MYROW.EQ.IAROW )
$ II = II - IB
END IF
*
* Find ROWMAXS
*
IF( MYROW.EQ.IAROW ) THEN
DO 130 K = 0, IB-1
IF( JJ.GT.JJA ) THEN
DO 120 LL = (JJA-1)*LDA, (JJ-2)*LDA, LDA
VALUE = MAX( VALUE, ABS( A( II+LL ) ) )
120 CONTINUE
END IF
II = II + 1
IF( MYCOL.EQ.IACOL )
$ JJ = JJ + 1
130 CONTINUE
ELSE IF( MYCOL.EQ.IACOL ) THEN
JJ = JJ + IB
END IF
*
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over rows/columns of global matrix.
*
DO 180 I = IN+1, IA+N-1, DESCA( MB_ )
IB = MIN( DESCA( MB_ ), IA+N-I )
*
* Find COLMAXS
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 150 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
IF( II.LE.IIA+NP-1 ) THEN
DO 140 LL = II, IIA+NP-1
VALUE = MAX( VALUE, ABS( A( LL+K ) ) )
140 CONTINUE
END IF
IF( MYROW.EQ.ICURROW )
$ II = II + 1
150 CONTINUE
*
* Reset local indices so we can find ROWMAXS
*
IF( MYROW.EQ.ICURROW )
$ II = II - IB
END IF
*
* Find ROWMAXS
*
IF( MYROW.EQ.ICURROW ) THEN
DO 170 K = 0, IB-1
IF( JJ.GT.JJA ) THEN
DO 160 LL = (JJA-1)*LDA, (JJ-2)*LDA, LDA
VALUE = MAX( VALUE, ABS( A( II+LL ) ) )
160 CONTINUE
END IF
II = II + 1
IF( MYCOL.EQ.ICURCOL )
$ JJ = JJ + 1
170 CONTINUE
ELSE IF( MYCOL.EQ.ICURCOL ) THEN
JJ = JJ + IB
END IF
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
180 CONTINUE
*
END IF
*
* Gather the result on process (IAROW,IACOL).
*
CALL DGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, I, K, -1,
$ IAROW, IACOL )
*
************************************************************************
* one or inf norm
*
ELSE IF( LSAME( NORM, 'I' ) .OR. LSAME( NORM, 'O' ) .OR.
$ NORM.EQ.'1' ) THEN
*
* Find normI( sub( A ) ) ( = norm1( sub( A ) ), since sub( A ) is
* symmetric).
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Handle first block separately
*
IB = IN-IA+1
*
* Find COLSUMS
*
IF( MYCOL.EQ.IACOL ) THEN
IOFFA = ( JJ - 1 ) * LDA
DO 200 K = 0, IB-1
SUM = ZERO
IF( II.GT.IIA ) THEN
DO 190 LL = IIA, II-1
SUM = SUM + ABS( A( LL+IOFFA ) )
190 CONTINUE
END IF
IOFFA = IOFFA + LDA
WORK( JJ+K-JJA+ICSR0 ) = SUM
IF( MYROW.EQ.IAROW )
$ II = II + 1
200 CONTINUE
*
* Reset local indices so we can find ROWSUMS
*
IF( MYROW.EQ.IAROW )
$ II = II - IB
*
END IF
*
* Find ROWSUMS
*
IF( MYROW.EQ.IAROW ) THEN
DO 220 K = II, II+IB-1
SUM = ZERO
IF( JJA+NQ.GT.JJ ) THEN
DO 210 LL = (JJ-1)*LDA, (JJA+NQ-2)*LDA, LDA
SUM = SUM + ABS( A( K+LL ) )
210 CONTINUE
END IF
WORK( K-IIA+IRSC0 ) = SUM
IF( MYCOL.EQ.IACOL )
$ JJ = JJ + 1
220 CONTINUE
II = II + IB
ELSE IF( MYCOL.EQ.IACOL ) THEN
JJ = JJ + IB
END IF
*
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining rows/columns of global matrix.
*
DO 270 I = IN+1, IA+N-1, DESCA( MB_ )
IB = MIN( DESCA( MB_ ), IA+N-I )
*
* Find COLSUMS
*
IF( MYCOL.EQ.ICURCOL ) THEN
IOFFA = ( JJ - 1 ) * LDA
DO 240 K = 0, IB-1
SUM = ZERO
IF( II.GT.IIA ) THEN
DO 230 LL = IIA, II-1
SUM = SUM + ABS( A( IOFFA+LL ) )
230 CONTINUE
END IF
IOFFA = IOFFA + LDA
WORK( JJ+K-JJA+ICSR0 ) = SUM
IF( MYROW.EQ.ICURROW )
$ II = II + 1
240 CONTINUE
*
* Reset local indices so we can find ROWSUMS
*
IF( MYROW.EQ.ICURROW )
$ II = II - IB
*
END IF
*
* Find ROWSUMS
*
IF( MYROW.EQ.ICURROW ) THEN
DO 260 K = II, II+IB-1
SUM = ZERO
IF( JJA+NQ.GT.JJ ) THEN
DO 250 LL = (JJ-1)*LDA, (JJA+NQ-2)*LDA, LDA
SUM = SUM + ABS( A( K+LL ) )
250 CONTINUE
END IF
WORK( K-IIA+IRSC0 ) = SUM
IF( MYCOL.EQ.ICURCOL )
$ JJ = JJ + 1
260 CONTINUE
II = II + IB
ELSE IF( MYCOL.EQ.ICURCOL ) THEN
JJ = JJ + IB
END IF
*
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
270 CONTINUE
*
ELSE
*
* Handle first block separately
*
IB = IN-IA+1
*
* Find COLSUMS
*
IF( MYCOL.EQ.IACOL ) THEN
IOFFA = (JJ-1)*LDA
DO 290 K = 0, IB-1
SUM = ZERO
IF( IIA+NP.GT.II ) THEN
DO 280 LL = II, IIA+NP-1
SUM = SUM + ABS( A( IOFFA+LL ) )
280 CONTINUE
END IF
IOFFA = IOFFA + LDA
WORK( JJ+K-JJA+ICSR0 ) = SUM
IF( MYROW.EQ.IAROW )
$ II = II + 1
290 CONTINUE
*
* Reset local indices so we can find ROWSUMS
*
IF( MYROW.EQ.IAROW )
$ II = II - IB
*
END IF
*
* Find ROWSUMS
*
IF( MYROW.EQ.IAROW ) THEN
DO 310 K = II, II+IB-1
SUM = ZERO
IF( JJ.GT.JJA ) THEN
DO 300 LL = (JJA-1)*LDA, (JJ-2)*LDA, LDA
SUM = SUM + ABS( A( K+LL ) )
300 CONTINUE
END IF
WORK( K-IIA+IRSC0 ) = SUM
IF( MYCOL.EQ.IACOL )
$ JJ = JJ + 1
310 CONTINUE
II = II + IB
ELSE IF( MYCOL.EQ.IACOL ) THEN
JJ = JJ + IB
END IF
*
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over rows/columns of global matrix.
*
DO 360 I = IN+1, IA+N-1, DESCA( MB_ )
IB = MIN( DESCA( MB_ ), IA+N-I )
*
* Find COLSUMS
*
IF( MYCOL.EQ.ICURCOL ) THEN
IOFFA = ( JJ - 1 ) * LDA
DO 330 K = 0, IB-1
SUM = ZERO
IF( IIA+NP.GT.II ) THEN
DO 320 LL = II, IIA+NP-1
SUM = SUM + ABS( A( LL+IOFFA ) )
320 CONTINUE
END IF
IOFFA = IOFFA + LDA
WORK( JJ+K-JJA+ICSR0 ) = SUM
IF( MYROW.EQ.ICURROW )
$ II = II + 1
330 CONTINUE
*
* Reset local indices so we can find ROWSUMS
*
IF( MYROW.EQ.ICURROW )
$ II = II - IB
*
END IF
*
* Find ROWSUMS
*
IF( MYROW.EQ.ICURROW ) THEN
DO 350 K = II, II+IB-1
SUM = ZERO
IF( JJ.GT.JJA ) THEN
DO 340 LL = (JJA-1)*LDA, (JJ-2)*LDA, LDA
SUM = SUM + ABS( A( K+LL ) )
340 CONTINUE
END IF
WORK(K-IIA+IRSC0) = SUM
IF( MYCOL.EQ.ICURCOL )
$ JJ = JJ + 1
350 CONTINUE
II = II + IB
ELSE IF( MYCOL.EQ.ICURCOL ) THEN
JJ = JJ + IB
END IF
*
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
360 CONTINUE
END IF
*
* After calls to DGSUM2D, process row 0 will have global
* COLSUMS and process column 0 will have global ROWSUMS.
* Transpose ROWSUMS and add to COLSUMS to get global row/column
* sum, the max of which is the infinity or 1 norm.
*
IF( MYCOL.EQ.IACOL )
$ NQ = NQ + ICOFF
CALL DGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK( ICSR ), 1,
$ IAROW, MYCOL )
IF( MYROW.EQ.IAROW )
$ NP = NP + IROFF
CALL DGSUM2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IRSC ),
$ MAX( 1, NP ), MYROW, IACOL )
*
CALL PDCOL2ROW( ICTXT, N, 1, DESCA( MB_ ), WORK( IRSC ),
$ MAX( 1, NP ), WORK( IRSR ), MAX( 1, NQ ),
$ IAROW, IACOL, IAROW, IACOL, WORK( IRSC+NP ) )
*
IF( MYROW.EQ.IAROW ) THEN
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFF
CALL DAXPY( NQ, ONE, WORK( IRSR0 ), 1, WORK( ICSR0 ), 1 )
IF( NQ.LT.1 ) THEN
VALUE = ZERO
ELSE
VALUE = WORK( IDAMAX( NQ, WORK( ICSR0 ), 1 ) )
END IF
CALL DGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, I, K,
$ -1, IAROW, IACOL )
END IF
*
************************************************************************
* Frobenius norm
* SSQ(1) is scale
* SSQ(2) is sum-of-squares
*
ELSE IF( LSAME( NORM, 'F' ) .OR. LSAME( NORM, 'E' ) ) THEN
*
* Find normF( sub( A ) ).
*
SSQ(1) = ZERO
SSQ(2) = ONE
*
* Add off-diagonal entries, first
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Handle first block separately
*
IB = IN-IA+1
*
IF( MYCOL.EQ.IACOL ) THEN
DO 370 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL DLASSQ( II-IIA, A( IIA+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
IF( MYROW.EQ.IAROW )
$ II = II + 1
CALL DLASSQ( II-IIA, A( IIA+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
370 CONTINUE
*
JJ = JJ + IB
ELSE IF( MYROW.EQ.IAROW ) THEN
II = II + IB
END IF
*
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over rows/columns of global matrix.
*
DO 390 I = IN+1, IA+N-1, DESCA( MB_ )
IB = MIN( DESCA( MB_ ), IA+N-I )
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 380 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL DLASSQ( II-IIA, A( IIA+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
IF( MYROW.EQ.ICURROW )
$ II = II + 1
CALL DLASSQ( II-IIA, A (IIA+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
380 CONTINUE
*
JJ = JJ + IB
ELSE IF( MYROW.EQ.ICURROW ) THEN
II = II + IB
END IF
*
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
390 CONTINUE
*
ELSE
*
* Handle first block separately
*
IB = IN-IA+1
*
IF( MYCOL.EQ.IACOL ) THEN
DO 400 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL DLASSQ( IIA+NP-II, A( II+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
IF( MYROW.EQ.IAROW )
$ II = II + 1
CALL DLASSQ( IIA+NP-II, A( II+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
400 CONTINUE
*
JJ = JJ + IB
ELSE IF( MYROW.EQ.IAROW ) THEN
II = II + IB
END IF
*
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over rows/columns of global matrix.
*
DO 420 I = IN+1, IA+N-1, DESCA( MB_ )
IB = MIN( DESCA( MB_ ), IA+N-I )
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 410 K = (JJ-1)*LDA, (JJ+IB-2)*LDA, LDA
COLSSQ(1) = ZERO
COLSSQ(2) = ONE
CALL DLASSQ( IIA+NP-II, A( II+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
IF( MYROW.EQ.ICURROW )
$ II = II + 1
CALL DLASSQ( IIA+NP-II, A( II+K ), 1,
$ COLSSQ(1), COLSSQ(2) )
CALL DCOMBSSQ( SSQ, COLSSQ )
410 CONTINUE
*
JJ = JJ + IB
ELSE IF( MYROW.EQ.ICURROW ) THEN
II = II + IB
END IF
*
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
420 CONTINUE
*
END IF
*
* Perform the global scaled sum
*
CALL PDTREECOMB( ICTXT, 'All', 2, SSQ, IAROW, IACOL,
$ DCOMBSSQ )
VALUE = SSQ( 1 ) * SQRT( SSQ( 2 ) )
*
END IF
*
* Broadcast the result to the other processes
*
IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.IACOL ) THEN
CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, IAROW,
$ IACOL )
END IF
*
PDLANSY = VALUE
*
RETURN
*
* End of PDLANSY
*
END
|