1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
SUBROUTINE PDLARFG( N, ALPHA, IAX, JAX, X, IX, JX, DESCX, INCX,
$ TAU )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IAX, INCX, IX, JAX, JX, N
DOUBLE PRECISION ALPHA
* ..
* .. Array Arguments ..
INTEGER DESCX( * )
DOUBLE PRECISION TAU( * ), X( * )
* ..
*
* Purpose
* =======
*
* PDLARFG generates a real elementary reflector H of order n, such
* that
*
* H * sub( X ) = H * ( x(iax,jax) ) = ( alpha ), H' * H = I.
* ( x ) ( 0 )
*
* where alpha is a scalar, and sub( X ) is an (N-1)-element real
* distributed vector X(IX:IX+N-2,JX) if INCX = 1 and X(IX,JX:JX+N-2) if
* INCX = DESCX(M_). H is represented in the form
*
* H = I - tau * ( 1 ) * ( 1 v' ) ,
* ( v )
*
* where tau is a real scalar and v is a real (N-1)-element
* vector.
*
* If the elements of sub( X ) are all zero, then tau = 0 and H is
* taken to be the unit matrix.
*
* Otherwise 1 <= tau <= 2.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Because vectors may be viewed as a subclass of matrices, a
* distributed vector is considered to be a distributed matrix.
*
* Arguments
* =========
*
* N (global input) INTEGER
* The global order of the elementary reflector. N >= 0.
*
* ALPHA (local output) DOUBLE PRECISION
* On exit, alpha is computed in the process scope having the
* vector sub( X ).
*
* IAX (global input) INTEGER
* The global row index in X of X(IAX,JAX).
*
* JAX (global input) INTEGER
* The global column index in X of X(IAX,JAX).
*
* X (local input/local output) DOUBLE PRECISION, pointer into the
* local memory to an array of dimension (LLD_X,*). This array
* contains the local pieces of the distributed vector sub( X ).
* Before entry, the incremented array sub( X ) must contain
* the vector x. On exit, it is overwritten with the vector v.
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* INCX (global input) INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
* INCX must not be zero.
*
* TAU (local output) DOUBLE PRECISION array, dimension LOCc(JX)
* if INCX = 1, and LOCr(IX) otherwise. This array contains the
* Householder scalars related to the Householder vectors.
* TAU is tied to the distributed matrix X.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER ICTXT, IIAX, INDXTAU, IXCOL, IXROW, J, JJAX,
$ KNT, MYCOL, MYROW, NPCOL, NPROW
DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DGEBR2D, DGEBS2D, PDSCAL,
$ INFOG2L, PDNRM2
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2
EXTERNAL DLAMCH, DLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCX( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IF( INCX.EQ.DESCX( M_ ) ) THEN
*
* sub( X ) is distributed across a process row.
*
CALL INFOG2L( IX, JAX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
$ IIAX, JJAX, IXROW, IXCOL )
*
IF( MYROW.NE.IXROW )
$ RETURN
*
* Broadcast X(IAX,JAX) across the process row.
*
IF( MYCOL.EQ.IXCOL ) THEN
J = IIAX+(JJAX-1)*DESCX( LLD_ )
CALL DGEBS2D( ICTXT, 'Rowwise', ' ', 1, 1, X( J ), 1 )
ALPHA = X( J )
ELSE
CALL DGEBR2D( ICTXT, 'Rowwise', ' ', 1, 1, ALPHA, 1,
$ MYROW, IXCOL )
END IF
*
INDXTAU = IIAX
*
ELSE
*
* sub( X ) is distributed across a process column.
*
CALL INFOG2L( IAX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
$ IIAX, JJAX, IXROW, IXCOL )
*
IF( MYCOL.NE.IXCOL )
$ RETURN
*
* Broadcast X(IAX,JAX) across the process column.
*
IF( MYROW.EQ.IXROW ) THEN
J = IIAX+(JJAX-1)*DESCX( LLD_ )
CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, X( J ), 1 )
ALPHA = X( J )
ELSE
CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, ALPHA, 1,
$ IXROW, MYCOL )
END IF
*
INDXTAU = JJAX
*
END IF
*
IF( N.LE.0 ) THEN
TAU( INDXTAU ) = ZERO
RETURN
END IF
*
CALL PDNRM2( N-1, XNORM, X, IX, JX, DESCX, INCX )
*
IF( XNORM.EQ.ZERO ) THEN
*
* H = I
*
TAU( INDXTAU ) = ZERO
*
ELSE
*
* General case
*
BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
SAFMIN = DLAMCH( 'S' )
RSAFMN = ONE / SAFMIN
IF( ABS( BETA ).LT.SAFMIN ) THEN
*
* XNORM, BETA may be inaccurate; scale X and recompute them
*
KNT = 0
10 CONTINUE
KNT = KNT + 1
CALL PDSCAL( N-1, RSAFMN, X, IX, JX, DESCX, INCX )
BETA = BETA*RSAFMN
ALPHA = ALPHA*RSAFMN
IF( ABS( BETA ).LT.SAFMIN )
$ GO TO 10
*
* New BETA is at most 1, at least SAFMIN
*
CALL PDNRM2( N-1, XNORM, X, IX, JX, DESCX, INCX )
BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
TAU( INDXTAU ) = ( BETA-ALPHA ) / BETA
CALL PDSCAL( N-1, ONE/(ALPHA-BETA), X, IX, JX, DESCX, INCX )
*
* If ALPHA is subnormal, it may lose relative accuracy
*
ALPHA = BETA
DO 20 J = 1, KNT
ALPHA = ALPHA*SAFMIN
20 CONTINUE
ELSE
TAU( INDXTAU ) = ( BETA-ALPHA ) / BETA
CALL PDSCAL( N-1, ONE/(ALPHA-BETA), X, IX, JX, DESCX, INCX )
ALPHA = BETA
END IF
END IF
*
RETURN
*
* End of PDLARFG
*
END
|