File: pdlarfg.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (281 lines) | stat: -rw-r--r-- 9,922 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
      SUBROUTINE PDLARFG( N, ALPHA, IAX, JAX, X, IX, JX, DESCX, INCX,
     $                    TAU )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IAX, INCX, IX, JAX, JX, N
      DOUBLE PRECISION   ALPHA
*     ..
*     .. Array Arguments ..
      INTEGER            DESCX( * )
      DOUBLE PRECISION   TAU( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PDLARFG generates a real elementary reflector H of order n, such
*  that
*
*     H * sub( X ) = H * ( x(iax,jax) ) = ( alpha ),   H' * H = I.
*                        (      x     )   (   0   )
*
*  where alpha is a scalar, and sub( X ) is an (N-1)-element real
*  distributed vector X(IX:IX+N-2,JX) if INCX = 1 and X(IX,JX:JX+N-2) if
*  INCX = DESCX(M_).  H is represented in the form
*
*        H = I - tau * ( 1 ) * ( 1 v' ) ,
*                      ( v )
*
*  where tau is a real scalar and v is a real (N-1)-element
*  vector.
*
*  If the elements of sub( X ) are all zero, then tau = 0 and H is
*  taken to be the unit matrix.
*
*  Otherwise  1 <= tau <= 2.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Because vectors may be viewed as a subclass of matrices, a
*  distributed vector is considered to be a distributed matrix.
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The global order of the elementary reflector. N >= 0.
*
*  ALPHA   (local output) DOUBLE PRECISION
*          On exit, alpha is computed in the process scope having the
*          vector sub( X ).
*
*  IAX     (global input) INTEGER
*          The global row index in X of X(IAX,JAX).
*
*  JAX     (global input) INTEGER
*          The global column index in X of X(IAX,JAX).
*
*  X       (local input/local output) DOUBLE PRECISION, pointer into the
*          local memory to an array of dimension (LLD_X,*). This array
*          contains the local pieces of the distributed vector sub( X ).
*          Before entry, the incremented array sub( X ) must contain
*          the vector x. On exit, it is overwritten with the vector v.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  INCX    (global input) INTEGER
*          The global increment for the elements of X. Only two values
*          of INCX are supported in this version, namely 1 and M_X.
*          INCX must not be zero.
*
*  TAU     (local output) DOUBLE PRECISION array, dimension  LOCc(JX)
*          if INCX = 1, and LOCr(IX) otherwise. This array contains the
*          Householder scalars related to the Householder vectors.
*          TAU is tied to the distributed matrix X.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICTXT, IIAX, INDXTAU, IXCOL, IXROW, J, JJAX,
     $                   KNT, MYCOL, MYROW, NPCOL, NPROW
      DOUBLE PRECISION   BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DGEBR2D, DGEBS2D, PDSCAL,
     $                   INFOG2L, PDNRM2
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           DLAMCH, DLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCX( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      IF( INCX.EQ.DESCX( M_ ) ) THEN
*
*        sub( X ) is distributed across a process row.
*
         CALL INFOG2L( IX, JAX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
     $                 IIAX, JJAX, IXROW, IXCOL )
*
         IF( MYROW.NE.IXROW )
     $      RETURN
*
*        Broadcast X(IAX,JAX) across the process row.
*
         IF( MYCOL.EQ.IXCOL ) THEN
            J = IIAX+(JJAX-1)*DESCX( LLD_ )
            CALL DGEBS2D( ICTXT, 'Rowwise', ' ', 1, 1, X( J ), 1 )
            ALPHA = X( J )
         ELSE
            CALL DGEBR2D( ICTXT, 'Rowwise', ' ', 1, 1, ALPHA, 1,
     $                    MYROW, IXCOL )
         END IF
*
         INDXTAU = IIAX
*
      ELSE
*
*        sub( X ) is distributed across a process column.
*
         CALL INFOG2L( IAX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
     $                 IIAX, JJAX, IXROW, IXCOL )
*
         IF( MYCOL.NE.IXCOL )
     $      RETURN
*
*        Broadcast X(IAX,JAX) across the process column.
*
         IF( MYROW.EQ.IXROW ) THEN
            J = IIAX+(JJAX-1)*DESCX( LLD_ )
            CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, X( J ), 1 )
            ALPHA = X( J )
         ELSE
            CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, ALPHA, 1,
     $                    IXROW, MYCOL )
         END IF
*
         INDXTAU = JJAX
*
      END IF
*
      IF( N.LE.0 ) THEN
         TAU( INDXTAU ) = ZERO
         RETURN
      END IF
*
      CALL PDNRM2( N-1, XNORM, X, IX, JX, DESCX, INCX )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H = I
*
         TAU( INDXTAU ) = ZERO
*
      ELSE
*
*        General case
*
         BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         SAFMIN = DLAMCH( 'S' )
         RSAFMN = ONE / SAFMIN
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            KNT = 0
   10       CONTINUE
            KNT = KNT + 1
            CALL PDSCAL( N-1, RSAFMN, X, IX, JX, DESCX, INCX )
            BETA = BETA*RSAFMN
            ALPHA = ALPHA*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            CALL PDNRM2( N-1, XNORM, X, IX, JX, DESCX, INCX )
            BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
            TAU( INDXTAU ) = ( BETA-ALPHA ) / BETA
            CALL PDSCAL( N-1, ONE/(ALPHA-BETA), X, IX, JX, DESCX, INCX )
*
*           If ALPHA is subnormal, it may lose relative accuracy
*
            ALPHA = BETA
            DO 20 J = 1, KNT
               ALPHA = ALPHA*SAFMIN
   20       CONTINUE
         ELSE
            TAU( INDXTAU ) = ( BETA-ALPHA ) / BETA
            CALL PDSCAL( N-1, ONE/(ALPHA-BETA), X, IX, JX, DESCX, INCX )
            ALPHA = BETA
         END IF
      END IF
*
      RETURN
*
*     End of PDLARFG
*
      END