File: pdlarzt.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (299 lines) | stat: -rw-r--r-- 11,215 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
      SUBROUTINE PDLARZT( DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU,
     $                    T, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            IV, JV, K, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCV( * )
      DOUBLE PRECISION   TAU( * ), T( * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PDLARZT forms the triangular factor T of a real block reflector
*  H of order > n, which is defined as a product of k elementary
*  reflectors as returned by PDTZRZF.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the array V, and
*
*     H  =  I - V * T * V'
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the array V, and
*
*     H  =  I - V' * T * V
*
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  DIRECT  (global input) CHARACTER
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (global input) CHARACTER
*          Specifies how the vectors which define the elementary
*          reflectors are stored (see also Further Details):
*          = 'C': columnwise                        (not supported yet)
*          = 'R': rowwise
*
*  N       (global input) INTEGER
*          The number of meaningful entries of the block reflector H.
*          N >= 0.
*
*  K       (global input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). 1 <= K <= MB_V (= NB_V).
*
*  V       (input/output) DOUBLE PRECISION pointer into the local memory
*          to an array of local dimension (LOCr(IV+K-1),LOCc(JV+N-1)).
*          The distributed matrix V contains the Householder vectors.
*          See further details.
*
*  IV      (global input) INTEGER
*          The row index in the global array V indicating the first
*          row of sub( V ).
*
*  JV      (global input) INTEGER
*          The column index in the global array V indicating the
*          first column of sub( V ).
*
*  DESCV   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix V.
*
*  TAU     (local input) DOUBLE PRECISION array, dimension LOCr(IV+K-1)
*          if INCV = M_V, and LOCc(JV+K-1) otherwise. This array
*          contains the Householder scalars related to the Householder
*          vectors.  TAU is tied to the distributed matrix V.
*
*  T       (local output) DOUBLE PRECISION array, dimension (MB_V,MB_V)
*          It contains the k-by-k triangular factor of the block
*          reflector associated with V. T is lower triangular.
*
*  WORK    (local workspace) DOUBLE PRECISION array,
*                                           dimension (K*(K-1)/2)
*
*  Further Details
*  ===============
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*
*                                              ______V_____
*         ( v1 v2 v3 )                        /            \
*         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
*     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
*         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
*         ( v1 v2 v3 )
*            .  .  .
*            .  .  .
*            1  .  .
*               1  .
*                  1
*
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*
*                                                        ______V_____
*            1                                          /            \
*            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
*            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
*            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
*            .  .  .
*         ( v1 v2 v3 )
*         ( v1 v2 v3 )
*     V = ( v1 v2 v3 )
*         ( v1 v2 v3 )
*         ( v1 v2 v3 )
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICOFF, ICTXT, II, IIV, INFO, IVCOL, IVROW,
     $                   ITMP0, ITMP1, IW, JJV, LDV, MYCOL, MYROW,
     $                   NPCOL, NPROW, NQ
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_ABORT, BLACS_GRIDINFO, DCOPY, DGEMV,
     $                   DGSUM2D, DLASET, DTRMV, INFOG2L,
     $                   PXERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      EXTERNAL           LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCV( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Check for currently supported options
*
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDLARZT', -INFO )
         CALL BLACS_ABORT( ICTXT, 1 )
         RETURN
      END IF
*
      CALL INFOG2L( IV, JV, DESCV, NPROW, NPCOL, MYROW, MYCOL,
     $              IIV, JJV, IVROW, IVCOL )
*
      IF( MYROW.EQ.IVROW ) THEN
         IW = 1
         ITMP0 = 0
         LDV = DESCV( LLD_ )
         ICOFF = MOD( JV-1, DESCV( NB_ ) )
         NQ = NUMROC( N+ICOFF, DESCV( NB_ ), MYCOL, IVCOL, NPCOL )
         IF( MYCOL.EQ.IVCOL )
     $      NQ = NQ - ICOFF
*
         DO 10 II = IIV+K-2, IIV, -1
*
*           T(i+1:k,i) = -tau( iv+i-1 ) *
*                     V(iv+i:iv+k-1,jv:jv+n-1) * V(iv+i-1,jv:jv+n-1)'
*
            ITMP0 = ITMP0 + 1
            IF( NQ.GT.0 ) THEN
               CALL DGEMV( 'No transpose', ITMP0, NQ, -TAU( II ),
     $                     V( II+1+(JJV-1)*LDV ), LDV,
     $                     V( II+(JJV-1)*LDV ), LDV, ZERO, WORK( IW ),
     $                     1 )
            ELSE
               CALL DLASET( 'All', ITMP0, 1, ZERO, ZERO, WORK( IW ),
     $                      ITMP0 )
            END IF
            IW = IW + ITMP0
*
   10    CONTINUE
*
         CALL DGSUM2D( ICTXT, 'Rowwise', ' ', IW-1, 1, WORK, IW-1,
     $                 MYROW, IVCOL )
*
         IF( MYCOL.EQ.IVCOL ) THEN
*
            IW = 1
            ITMP0 = 0
            ITMP1 = K + 1 + (K-1) * DESCV( MB_ )
*
            T( ITMP1-1 ) = TAU( IIV+K-1 )
*
            DO 20 II = IIV+K-2, IIV, -1
*
*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
*
               ITMP0 = ITMP0 + 1
               ITMP1 = ITMP1 - DESCV( MB_ ) - 1
               CALL DCOPY( ITMP0, WORK( IW ), 1, T( ITMP1 ), 1 )
               IW = IW + ITMP0
*
               CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', ITMP0,
     $                     T( ITMP1+DESCV( MB_ ) ), DESCV( MB_ ),
     $                     T( ITMP1 ), 1 )
               T( ITMP1-1 ) = TAU( II )
*
   20       CONTINUE
*
         END IF
*
      END IF
*
      RETURN
*
*     End of PDLARZT
*
      END