1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
SUBROUTINE PDPOEQU( N, A, IA, JA, DESCA, SR, SC, SCOND, AMAX,
$ INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 25, 2001
*
* .. Scalar Arguments ..
INTEGER IA, INFO, JA, N
DOUBLE PRECISION AMAX, SCOND
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * ), SC( * ), SR( * )
* ..
*
* Purpose
* =======
*
* PDPOEQU computes row and column scalings intended to
* equilibrate a distributed symmetric positive definite matrix
* sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number
* (with respect to the two-norm). SR and SC contain the scale
* factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled distri-
* buted matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on
* the diagonal. This choice of SR and SC puts the condition number
* of B within a factor N of the smallest possible condition number
* over all possible diagonal scalings.
*
* The scaling factor are stored along process rows in SR and along
* process columns in SC. The duplication of information simplifies
* greatly the application of the factors.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* N (global input) INTEGER
* The number of rows and columns to be operated on i.e the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input) DOUBLE PRECISION pointer into the local memory
* to an array of local dimension ( LLD_A, LOCc(JA+N-1) ), the
* N-by-N symmetric positive definite distributed matrix
* sub( A ) whose scaling factors are to be computed. Only the
* diagonal elements of sub( A ) are referenced.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* SR (local output) DOUBLE PRECISION array, dimension LOCr(M_A)
* If INFO = 0, SR(IA:IA+N-1) contains the row scale factors
* for sub( A ). SR is aligned with the distributed matrix A,
* and replicated across every process column. SR is tied to the
* distributed matrix A.
*
* SC (local output) DOUBLE PRECISION array, dimension LOCc(N_A)
* If INFO = 0, SC(JA:JA+N-1) contains the column scale factors
* for A(IA:IA+M-1,JA:JA+N-1). SC is aligned with the distribu-
* ted matrix A, and replicated down every process row. SC is
* tied to the distributed matrix A.
*
* SCOND (global output) DOUBLE PRECISION
* If INFO = 0, SCOND contains the ratio of the smallest SR(i)
* (or SC(j)) to the largest SR(i) (or SC(j)), with
* IA <= i <= IA+N-1 and JA <= j <= JA+N-1. If SCOND >= 0.1
* and AMAX is neither too large nor too small, it is not worth
* scaling by SR (or SC).
*
* AMAX (global output) DOUBLE PRECISION
* Absolute value of largest matrix element. If AMAX is very
* close to overflow or very close to underflow, the matrix
* should be scaled.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: If INFO = K, the K-th diagonal entry of sub( A ) is
* nonpositive.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
CHARACTER ALLCTOP, COLCTOP, ROWCTOP
INTEGER IACOL, IAROW, ICOFF, ICTXT, ICURCOL, ICURROW,
$ IDUMM, II, IIA, IOFFA, IOFFD, IROFF, J, JB, JJ,
$ JJA, JN, LDA, LL, MYCOL, MYROW, NP, NPCOL,
$ NPROW, NQ
DOUBLE PRECISION AII, SMIN
* ..
* .. Local Arrays ..
INTEGER DESCSC( DLEN_ ), DESCSR( DLEN_ )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCSET, DGAMN2D,
$ DGAMX2D, DGSUM2D, IGAMN2D, INFOG2L,
$ PCHK1MAT, PB_TOPGET, PXERBLA
* ..
* .. External Functions ..
INTEGER ICEIL, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL ICEIL, NUMROC, PDLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters.
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(500+CTXT_)
ELSE
CALL CHK1MAT( N, 1, N, 1, IA, JA, DESCA, 5, INFO )
CALL PCHK1MAT( N, 1, N, 1, IA, JA, DESCA, 5, 0, IDUMM, IDUMM,
$ INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDPOEQU', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
SCOND = ONE
AMAX = ZERO
RETURN
END IF
*
CALL PB_TOPGET( ICTXT, 'Combine', 'All', ALLCTOP )
CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
*
* Compute some local indexes
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYROW.EQ.IAROW )
$ NP = NP - IROFF
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFF
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
LDA = DESCA( LLD_ )
*
* Assign descriptors for SR and SC arrays
*
CALL DESCSET( DESCSR, N, 1, DESCA( MB_ ), 1, 0, 0, ICTXT,
$ MAX( 1, NP ) )
CALL DESCSET( DESCSC, 1, N, 1, DESCA( NB_ ), 0, 0, ICTXT, 1 )
*
* Initialize the scaling factors to zero.
*
DO 10 II = IIA, IIA+NP-1
SR( II ) = ZERO
10 CONTINUE
*
DO 20 JJ = JJA, JJA+NQ-1
SC( JJ ) = ZERO
20 CONTINUE
*
* Find the minimum and maximum diagonal elements.
* Handle first block separately.
*
II = IIA
JJ = JJA
JB = JN-JA+1
SMIN = ONE / PDLAMCH( ICTXT, 'S' )
AMAX = ZERO
*
IOFFA = II+(JJ-1)*LDA
IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.IACOL ) THEN
IOFFD = IOFFA
DO 30 LL = 0, JB-1
AII = A( IOFFD )
SR( II+LL ) = AII
SC( JJ+LL ) = AII
SMIN = MIN( SMIN, AII )
AMAX = MAX( AMAX, AII )
IF( AII.LE.ZERO .AND. INFO.EQ.0 )
$ INFO = LL + 1
IOFFD = IOFFD + LDA + 1
30 CONTINUE
END IF
*
IF( MYROW.EQ.IAROW ) THEN
II = II + JB
IOFFA = IOFFA + JB
END IF
IF( MYCOL.EQ.IACOL ) THEN
JJ = JJ + JB
IOFFA = IOFFA + JB*LDA
END IF
ICURROW = MOD( IAROW+1, NPROW )
ICURCOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining blocks of columns
*
DO 50 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( N-J+JA, DESCA( NB_ ) )
*
IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
IOFFD = IOFFA
DO 40 LL = 0, JB-1
AII = A( IOFFD )
SR( II+LL ) = AII
SC( JJ+LL ) = AII
SMIN = MIN( SMIN, AII )
AMAX = MAX( AMAX, AII )
IF( AII.LE.ZERO .AND. INFO.EQ.0 )
$ INFO = J + LL - JA + 1
IOFFD = IOFFD + LDA + 1
40 CONTINUE
END IF
*
IF( MYROW.EQ.ICURROW ) THEN
II = II + JB
IOFFA = IOFFA + JB
END IF
IF( MYCOL.EQ.ICURCOL ) THEN
JJ = JJ + JB
IOFFA = IOFFA + JB*LDA
END IF
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
50 CONTINUE
*
* Compute scaling factors
*
CALL DGSUM2D( ICTXT, 'Columnwise', COLCTOP, 1, NQ, SC( JJA ),
$ 1, -1, MYCOL )
CALL DGSUM2D( ICTXT, 'Rowwise', ROWCTOP, NP, 1, SR( IIA ),
$ MAX( 1, NP ), -1, MYCOL )
*
CALL DGAMX2D( ICTXT, 'All', ALLCTOP, 1, 1, AMAX, 1, IDUMM, IDUMM,
$ -1, -1, MYCOL )
CALL DGAMN2D( ICTXT, 'All', ALLCTOP, 1, 1, SMIN, 1, IDUMM, IDUMM,
$ -1, -1, MYCOL )
*
IF( SMIN.LE.ZERO ) THEN
*
* Find the first non-positive diagonal element and return.
*
CALL IGAMN2D( ICTXT, 'All', ALLCTOP, 1, 1, INFO, 1, II, JJ, -1,
$ -1, MYCOL )
RETURN
*
ELSE
*
* Set the scale factors to the reciprocals
* of the diagonal elements.
*
DO 60 II = IIA, IIA+NP-1
SR( II ) = ONE / SQRT( SR( II ) )
60 CONTINUE
*
DO 70 JJ = JJA, JJA+NQ-1
SC( JJ ) = ONE / SQRT( SC( JJ ) )
70 CONTINUE
*
* Compute SCOND = min(S(I)) / max(S(I))
*
SCOND = SQRT( SMIN ) / SQRT( AMAX )
*
END IF
*
RETURN
*
* End of PDPOEQU
*
END
|