File: pdpoequ.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (357 lines) | stat: -rw-r--r-- 12,981 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
      SUBROUTINE PDPOEQU( N, A, IA, JA, DESCA, SR, SC, SCOND, AMAX,
     $                    INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 25, 2001
*
*     .. Scalar Arguments ..
      INTEGER            IA, INFO, JA, N
      DOUBLE PRECISION   AMAX, SCOND
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   A( * ), SC( * ), SR( * )
*     ..
*
*  Purpose
*  =======
*
*  PDPOEQU computes row and column scalings intended to
*  equilibrate a distributed symmetric positive definite matrix
*  sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number
*  (with respect to the two-norm).  SR and SC contain the scale
*  factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled distri-
*  buted matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on
*  the  diagonal.  This choice of SR and SC puts the condition number
*  of B within a factor N of the smallest possible condition number
*  over all possible diagonal scalings.
*
*  The scaling factor are stored along process rows in SR and along
*  process columns in SC. The duplication of information simplifies
*  greatly the application of the factors.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on i.e the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input) DOUBLE PRECISION pointer into the local memory
*          to an array of local dimension ( LLD_A, LOCc(JA+N-1) ), the
*          N-by-N symmetric positive definite distributed matrix
*          sub( A ) whose scaling factors are to be computed.  Only the
*          diagonal elements of sub( A ) are referenced.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  SR      (local output) DOUBLE PRECISION array, dimension LOCr(M_A)
*          If INFO = 0, SR(IA:IA+N-1) contains the row scale factors
*          for sub( A ). SR is aligned with the distributed matrix A,
*          and replicated across every process column. SR is tied to the
*          distributed matrix A.
*
*  SC      (local output) DOUBLE PRECISION array, dimension LOCc(N_A)
*          If INFO = 0, SC(JA:JA+N-1) contains the column scale factors
*          for A(IA:IA+M-1,JA:JA+N-1). SC is aligned with the distribu-
*          ted matrix A, and replicated down every process row. SC is
*          tied to the distributed matrix A.
*
*  SCOND   (global output) DOUBLE PRECISION
*          If INFO = 0, SCOND contains the ratio of the smallest SR(i)
*          (or SC(j)) to the largest SR(i) (or SC(j)), with
*          IA <= i <= IA+N-1 and JA <= j <= JA+N-1. If SCOND >= 0.1
*          and AMAX is neither too large nor too small, it is not worth
*          scaling by SR (or SC).
*
*  AMAX    (global output) DOUBLE PRECISION
*          Absolute value of largest matrix element.  If AMAX is very
*          close to overflow or very close to underflow, the matrix
*          should be scaled.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = K, the K-th diagonal entry of sub( A ) is
*                nonpositive.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          ALLCTOP, COLCTOP, ROWCTOP
      INTEGER            IACOL, IAROW, ICOFF, ICTXT, ICURCOL, ICURROW,
     $                   IDUMM, II, IIA, IOFFA, IOFFD, IROFF, J, JB, JJ,
     $                   JJA, JN, LDA, LL, MYCOL, MYROW, NP, NPCOL,
     $                   NPROW, NQ
      DOUBLE PRECISION   AII, SMIN
*     ..
*     .. Local Arrays ..
      INTEGER            DESCSC( DLEN_ ), DESCSR( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCSET, DGAMN2D,
     $                   DGAMX2D, DGSUM2D, IGAMN2D, INFOG2L,
     $                   PCHK1MAT, PB_TOPGET, PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            ICEIL, NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           ICEIL, NUMROC, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters.
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(500+CTXT_)
      ELSE
         CALL CHK1MAT( N, 1, N, 1, IA, JA, DESCA, 5, INFO )
         CALL PCHK1MAT( N, 1, N, 1, IA, JA, DESCA, 5, 0, IDUMM, IDUMM,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDPOEQU', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SCOND = ONE
         AMAX = ZERO
         RETURN
      END IF
*
      CALL PB_TOPGET( ICTXT, 'Combine', 'All', ALLCTOP )
      CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
      CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
*
*     Compute some local indexes
*
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYROW.EQ.IAROW )
     $   NP = NP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
      LDA = DESCA( LLD_ )
*
*     Assign descriptors for SR and SC arrays
*
      CALL DESCSET( DESCSR, N, 1, DESCA( MB_ ), 1, 0, 0, ICTXT,
     $               MAX( 1, NP ) )
      CALL DESCSET( DESCSC, 1, N, 1, DESCA( NB_ ), 0, 0, ICTXT, 1 )
*
*     Initialize the scaling factors to zero.
*
      DO 10 II = IIA, IIA+NP-1
         SR( II ) = ZERO
   10 CONTINUE
*
      DO 20 JJ = JJA, JJA+NQ-1
         SC( JJ ) = ZERO
   20 CONTINUE
*
*     Find the minimum and maximum diagonal elements.
*     Handle first block separately.
*
      II = IIA
      JJ = JJA
      JB = JN-JA+1
      SMIN = ONE / PDLAMCH( ICTXT, 'S' )
      AMAX = ZERO
*
      IOFFA = II+(JJ-1)*LDA
      IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.IACOL ) THEN
         IOFFD = IOFFA
         DO 30 LL = 0, JB-1
            AII = A( IOFFD  )
            SR( II+LL ) = AII
            SC( JJ+LL ) = AII
            SMIN = MIN( SMIN, AII )
            AMAX = MAX( AMAX, AII )
            IF( AII.LE.ZERO .AND. INFO.EQ.0 )
     $         INFO = LL + 1
            IOFFD = IOFFD + LDA + 1
   30    CONTINUE
      END IF
*
      IF( MYROW.EQ.IAROW ) THEN
         II = II + JB
         IOFFA = IOFFA + JB
      END IF
      IF( MYCOL.EQ.IACOL ) THEN
         JJ = JJ + JB
         IOFFA = IOFFA + JB*LDA
      END IF
      ICURROW = MOD( IAROW+1, NPROW )
      ICURCOL = MOD( IACOL+1, NPCOL )
*
*     Loop over remaining blocks of columns
*
      DO 50 J = JN+1, JA+N-1, DESCA( NB_ )
         JB = MIN( N-J+JA, DESCA( NB_ ) )
*
         IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
            IOFFD = IOFFA
            DO 40 LL = 0, JB-1
               AII = A( IOFFD )
               SR( II+LL ) = AII
               SC( JJ+LL ) = AII
               SMIN = MIN( SMIN, AII )
               AMAX = MAX( AMAX, AII )
               IF( AII.LE.ZERO .AND. INFO.EQ.0 )
     $            INFO = J + LL - JA + 1
               IOFFD = IOFFD + LDA + 1
   40       CONTINUE
         END IF
*
         IF( MYROW.EQ.ICURROW ) THEN
            II = II + JB
            IOFFA = IOFFA + JB
         END IF
         IF( MYCOL.EQ.ICURCOL ) THEN
            JJ = JJ + JB
            IOFFA = IOFFA + JB*LDA
         END IF
         ICURROW = MOD( ICURROW+1, NPROW )
         ICURCOL = MOD( ICURCOL+1, NPCOL )
*
   50 CONTINUE
*
*     Compute scaling factors
*
      CALL DGSUM2D( ICTXT, 'Columnwise', COLCTOP, 1, NQ, SC( JJA ),
     $              1, -1, MYCOL )
      CALL DGSUM2D( ICTXT, 'Rowwise', ROWCTOP, NP, 1, SR( IIA ),
     $              MAX( 1, NP ), -1, MYCOL )
*
      CALL DGAMX2D( ICTXT, 'All', ALLCTOP, 1, 1, AMAX, 1, IDUMM, IDUMM,
     $              -1, -1, MYCOL )
      CALL DGAMN2D( ICTXT, 'All', ALLCTOP, 1, 1, SMIN, 1, IDUMM, IDUMM,
     $              -1, -1, MYCOL )
*
      IF( SMIN.LE.ZERO ) THEN
*
*        Find the first non-positive diagonal element and return.
*
         CALL IGAMN2D( ICTXT, 'All', ALLCTOP, 1, 1, INFO, 1, II, JJ, -1,
     $                 -1, MYCOL )
         RETURN
*
      ELSE
*
*        Set the scale factors to the reciprocals
*        of the diagonal elements.
*
         DO 60 II = IIA, IIA+NP-1
            SR( II ) = ONE / SQRT( SR( II ) )
   60    CONTINUE
*
         DO 70 JJ = JJA, JJA+NQ-1
            SC( JJ ) = ONE / SQRT( SC( JJ ) )
   70    CONTINUE
*
*        Compute SCOND = min(S(I)) / max(S(I))
*
         SCOND = SQRT( SMIN ) / SQRT( AMAX )
*
      END IF
*
      RETURN
*
*     End of PDPOEQU
*
      END