1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
SUBROUTINE PDROT( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY,
$ INCY, CS, SN, WORK, LWORK, INFO )
*
* Contribution from the Department of Computing Science and HPC2N,
* Umea University, Sweden
*
* -- ScaLAPACK auxiliary routine (version 2.0.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* Univ. of Colorado Denver and University of California, Berkeley.
* January, 2012
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER N, IX, JX, INCX, IY, JY, INCY, LWORK, INFO
DOUBLE PRECISION CS, SN
* ..
* .. Array Arguments ..
INTEGER DESCX( * ), DESCY( * )
DOUBLE PRECISION X( * ), Y( * ), WORK( * )
* ..
*
* Purpose
* =======
* PDROT applies a planar rotation defined by CS and SN to the
* two distributed vectors sub(X) and sub(Y).
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* N (global input) INTEGER
* The number of elements to operate on when applying the planar
* rotation to X and Y. N>=0.
*
* X (local input/local output) DOUBLE PRECSION array of dimension
* ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
* This array contains the entries of the distributed vector
* sub( X ).
*
* IX (global input) INTEGER
* The global row index of the submatrix of the distributed
* matrix X to operate on. If INCX = 1, then it is required
* that IX = IY. 1 <= IX <= M_X.
*
* JX (global input) INTEGER
* The global column index of the submatrix of the distributed
* matrix X to operate on. If INCX = M_X, then it is required
* that JX = JY. 1 <= IX <= N_X.
*
* DESCX (global and local input) INTEGER array of dimension 9
* The array descriptor of the distributed matrix X.
*
* INCX (global input) INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
* Moreover, it must hold that INCX = M_X if INCY = M_Y and
* that INCX = 1 if INCY = 1.
*
* Y (local input/local output) DOUBLE PRECSION array of dimension
* ( (JY-1)*M_Y + IY + ( N - 1 )*abs( INCY ) )
* This array contains the entries of the distributed vector
* sub( Y ).
*
* IY (global input) INTEGER
* The global row index of the submatrix of the distributed
* matrix Y to operate on. If INCY = 1, then it is required
* that IY = IX. 1 <= IY <= M_Y.
*
* JY (global input) INTEGER
* The global column index of the submatrix of the distributed
* matrix Y to operate on. If INCY = M_X, then it is required
* that JY = JX. 1 <= JY <= N_Y.
*
* DESCY (global and local input) INTEGER array of dimension 9
* The array descriptor of the distributed matrix Y.
*
* INCY (global input) INTEGER
* The global increment for the elements of Y. Only two values
* of INCY are supported in this version, namely 1 and M_Y.
* Moreover, it must hold that INCY = M_Y if INCX = M_X and
* that INCY = 1 if INCX = 1.
*
* CS (global input) DOUBLE PRECISION
* SN (global input) DOUBLE PRECISION
* The parameters defining the properties of the planar
* rotation. It must hold that 0 <= CS,SN <= 1 and that
* SN**2 + CS**2 = 1. The latter is hardly checked in
* finite precision arithmetics.
*
* WORK (local input) DOUBLE PRECISION array of dimension LWORK
* Local workspace area.
*
* LWORK (local input) INTEGER
* The length of the workspace array WORK.
* If INCX = 1 and INCY = 1, then LWORK = 2*MB_X
*
* If LWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal size of the WORK array,
* returns this value as the first entry of the IWORK array, and
* no error message related to LIWORK is issued by PXERBLA.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then INFO = -i.
*
* Additional requirements
* =======================
*
* The following alignment requirements must hold:
* (a) DESCX( MB_ ) = DESCY( MB_ ) and DESCX( NB_ ) = DESCY( NB_ )
* (b) DESCX( RSRC_ ) = DESCY( RSRC_ )
* (c) DESCX( CSRC_ ) = DESCY( CSRC_ )
*
* =====================================================================
*
* Written by Robert Granat, May 15, 2007.
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, LEFT, RIGHT
INTEGER ICTXT, NPROW, NPCOL, MYROW, MYCOL, NPROCS,
$ MB, NB, XYROWS, XYCOLS, RSRC1, RSRC2, CSRC1,
$ CSRC2, ICOFFXY, IROFFXY, MNWRK, LLDX, LLDY,
$ INDX, JXX, XLOC1, XLOC2, RSRC, CSRC, YLOC1,
$ YLOC2, JYY, IXX, IYY
* ..
* .. External Functions ..
INTEGER NUMROC, INDXG2P, INDXG2L
EXTERNAL NUMROC, INDXG2P, INDXG2L
* ..
* .. External Subroutines ..
EXTERNAL DROT
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Local Functions ..
INTEGER ICEIL
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCX( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
NPROCS = NPROW*NPCOL
*
* Test and decode parameters
*
LQUERY = LWORK.EQ.-1
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSEIF( IX.LT.1 .OR. IX.GT.DESCX(M_) ) THEN
INFO = -3
ELSEIF( JX.LT.1 .OR. JX.GT.DESCX(N_) ) THEN
INFO = -4
ELSEIF( INCX.NE.1 .AND. INCX.NE.DESCX(M_) ) THEN
INFO = -6
ELSEIF( IY.LT.1 .OR. IY.GT.DESCY(M_) ) THEN
INFO = -8
ELSEIF( JY.LT.1 .OR. JY.GT.DESCY(N_) ) THEN
INFO = -9
ELSEIF( INCY.NE.1 .AND. INCY.NE.DESCY(M_) ) THEN
INFO = -11
ELSEIF( (INCX.EQ.DESCX(M_) .AND. INCY.NE.DESCY(M_)) .OR.
$ (INCX.EQ.1 .AND. INCY.NE.1 ) ) THEN
INFO = -11
ELSEIF( (INCX.EQ.1 .AND. INCY.EQ.1) .AND.
$ IX.NE.IY ) THEN
INFO = -8
ELSEIF( (INCX.EQ.DESCX(M_) .AND. INCY.EQ.DESCY(M_)) .AND.
$ JX.NE.JY ) THEN
INFO = -9
END IF
*
* Compute the direction of the planar rotation
*
LEFT = INCX.EQ.DESCX(M_) .AND. INCY.EQ.DESCY(M_)
RIGHT = INCX.EQ.1 .AND. INCY.EQ.1
*
* Check blocking factors and root processor
*
IF( INFO.EQ.0 ) THEN
IF( LEFT .AND. DESCX(NB_).NE.DESCY(NB_) ) THEN
INFO = -(100*5 + NB_)
END IF
IF( RIGHT .AND. DESCX(MB_).NE.DESCY(NB_) ) THEN
INFO = -(100*10 + MB_)
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LEFT .AND. DESCX(CSRC_).NE.DESCY(CSRC_) ) THEN
INFO = -(100*5 + CSRC_)
END IF
IF( RIGHT .AND. DESCX(RSRC_).NE.DESCY(RSRC_) ) THEN
INFO = -(100*10 + RSRC_)
END IF
END IF
*
* Compute workspace
*
MB = DESCX( MB_ )
NB = DESCX( NB_ )
IF( LEFT ) THEN
RSRC1 = INDXG2P( IX, MB, MYROW, DESCX(RSRC_), NPROW )
RSRC2 = INDXG2P( IY, MB, MYROW, DESCY(RSRC_), NPROW )
CSRC = INDXG2P( JX, NB, MYCOL, DESCX(CSRC_), NPCOL )
ICOFFXY = MOD( JX - 1, NB )
XYCOLS = NUMROC( N+ICOFFXY, NB, MYCOL, CSRC, NPCOL )
IF( ( MYROW.EQ.RSRC1 .OR. MYROW.EQ.RSRC2 ) .AND.
$ MYCOL.EQ.CSRC ) XYCOLS = XYCOLS - ICOFFXY
IF( RSRC1.NE.RSRC2 ) THEN
MNWRK = XYCOLS
ELSE
MNWRK = 0
END IF
ELSEIF( RIGHT ) THEN
CSRC1 = INDXG2P( JX, NB, MYCOL, DESCX(CSRC_), NPCOL )
CSRC2 = INDXG2P( JY, NB, MYCOL, DESCY(CSRC_), NPCOL )
RSRC = INDXG2P( IX, MB, MYROW, DESCX(RSRC_), NPROW )
IROFFXY = MOD( IX - 1, MB )
XYROWS = NUMROC( N+IROFFXY, MB, MYROW, RSRC, NPROW )
IF( ( MYCOL.EQ.CSRC1 .OR. MYCOL.EQ.CSRC2 ) .AND.
$ MYROW.EQ.RSRC ) XYROWS = XYROWS - IROFFXY
IF( CSRC1.NE.CSRC2 ) THEN
MNWRK = XYROWS
ELSE
MNWRK = 0
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( .NOT.LQUERY . AND. LWORK.LT.MNWRK ) INFO = -15
END IF
*
* Return if some argument is incorrect
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDROT', -INFO )
RETURN
ELSEIF( LQUERY ) THEN
WORK( 1 ) = DBLE(MNWRK)
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
RETURN
END IF
*
* Extract local leading dimensions
*
LLDX = DESCX( LLD_ )
LLDY = DESCY( LLD_ )
*
* If we have only one process, use the corresponding LAPACK
* routine and return
*
IF( NPROCS.EQ.1 ) THEN
IF( LEFT ) THEN
CALL DROT( N, X((JX-1)*LLDX+IX), LLDX, Y((JY-1)*LLDY+IY),
$ LLDY, CS, SN )
ELSEIF( RIGHT ) THEN
CALL DROT( N, X((JX-1)*LLDX+IX), 1, Y((JY-1)*LLDY+IY),
$ 1, CS, SN )
END IF
RETURN
END IF
*
* Exchange data between processors if necessary and perform planar
* rotation
*
IF( LEFT ) THEN
DO 10 INDX = 1, NPCOL
IF( MYROW.EQ.RSRC1 .AND. XYCOLS.GT.0 ) THEN
IF( INDX.EQ.1 ) THEN
JXX = JX
ELSE
JXX = JX-ICOFFXY + (INDX-1)*NB
END IF
CALL INFOG2L( IX, JXX, DESCX, NPROW, NPCOL, MYROW,
$ MYCOL, XLOC1, XLOC2, RSRC, CSRC )
IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
IF( RSRC1.NE.RSRC2 ) THEN
CALL DGESD2D( ICTXT, 1, XYCOLS,
$ X((XLOC2-1)*LLDX+XLOC1), LLDX,
$ RSRC2, CSRC )
CALL DGERV2D( ICTXT, 1, XYCOLS, WORK, 1,
$ RSRC2, CSRC )
CALL DROT( XYCOLS, X((XLOC2-1)*LLDX+XLOC1),
$ LLDX, WORK, 1, CS, SN )
ELSE
CALL INFOG2L( IY, JXX, DESCY, NPROW, NPCOL,
$ MYROW, MYCOL, YLOC1, YLOC2, RSRC,
$ CSRC )
CALL DROT( XYCOLS, X((XLOC2-1)*LLDX+XLOC1),
$ LLDX, Y((YLOC2-1)*LLDY+YLOC1), LLDY, CS,
$ SN )
END IF
END IF
END IF
IF( MYROW.EQ.RSRC2 .AND. RSRC1.NE.RSRC2 ) THEN
IF( INDX.EQ.1 ) THEN
JYY = JY
ELSE
JYY = JY-ICOFFXY + (INDX-1)*NB
END IF
CALL INFOG2L( IY, JYY, DESCY, NPROW, NPCOL, MYROW,
$ MYCOL, YLOC1, YLOC2, RSRC, CSRC )
IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
CALL DGESD2D( ICTXT, 1, XYCOLS,
$ Y((YLOC2-1)*LLDY+YLOC1), LLDY,
$ RSRC1, CSRC )
CALL DGERV2D( ICTXT, 1, XYCOLS, WORK, 1,
$ RSRC1, CSRC )
CALL DROT( XYCOLS, WORK, 1, Y((YLOC2-1)*LLDY+YLOC1),
$ LLDY, CS, SN )
END IF
END IF
10 CONTINUE
ELSEIF( RIGHT ) THEN
DO 20 INDX = 1, NPROW
IF( MYCOL.EQ.CSRC1 .AND. XYROWS.GT.0 ) THEN
IF( INDX.EQ.1 ) THEN
IXX = IX
ELSE
IXX = IX-IROFFXY + (INDX-1)*MB
END IF
CALL INFOG2L( IXX, JX, DESCX, NPROW, NPCOL, MYROW,
$ MYCOL, XLOC1, XLOC2, RSRC, CSRC )
IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
IF( CSRC1.NE.CSRC2 ) THEN
CALL DGESD2D( ICTXT, XYROWS, 1,
$ X((XLOC2-1)*LLDX+XLOC1), LLDX,
$ RSRC, CSRC2 )
CALL DGERV2D( ICTXT, XYROWS, 1, WORK, XYROWS,
$ RSRC, CSRC2 )
CALL DROT( XYROWS, X((XLOC2-1)*LLDX+XLOC1),
$ 1, WORK, 1, CS, SN )
ELSE
CALL INFOG2L( IXX, JY, DESCY, NPROW, NPCOL,
$ MYROW, MYCOL, YLOC1, YLOC2, RSRC,
$ CSRC )
CALL DROT( XYROWS, X((XLOC2-1)*LLDX+XLOC1),
$ 1, Y((YLOC2-1)*LLDY+YLOC1), 1, CS,
$ SN )
END IF
END IF
END IF
IF( MYCOL.EQ.CSRC2 .AND. CSRC1.NE.CSRC2 ) THEN
IF( INDX.EQ.1 ) THEN
IYY = IY
ELSE
IYY = IY-IROFFXY + (INDX-1)*MB
END IF
CALL INFOG2L( IYY, JY, DESCY, NPROW, NPCOL, MYROW,
$ MYCOL, YLOC1, YLOC2, RSRC, CSRC )
IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
CALL DGESD2D( ICTXT, XYROWS, 1,
$ Y((YLOC2-1)*LLDY+YLOC1), LLDY,
$ RSRC, CSRC1 )
CALL DGERV2D( ICTXT, XYROWS, 1, WORK, XYROWS,
$ RSRC, CSRC1 )
CALL DROT( XYROWS, WORK, 1, Y((YLOC2-1)*LLDY+YLOC1),
$ 1, CS, SN )
END IF
END IF
20 CONTINUE
END IF
*
* Store minimum workspace requirements in WORK-array and return
*
WORK( 1 ) = DBLE(MNWRK)
RETURN
*
* End of PDROT
*
END
|