1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
SUBROUTINE PDSYEVD( JOBZ, UPLO, N, A, IA, JA, DESCA, W, Z, IZ, JZ,
$ DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* March 14, 2000
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER IA, INFO, IZ, JA, JZ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCZ( * ), IWORK( * )
DOUBLE PRECISION A( * ), W( * ), WORK( * ), Z( * )
* ..
*
* Purpose
* =======
*
* PDSYEVD computes all the eigenvalues and eigenvectors
* of a real symmetric matrix A by calling the recommended sequence
* of ScaLAPACK routines.
*
* In its present form, PDSYEVD assumes a homogeneous system and makes
* no checks for consistency of the eigenvalues or eigenvectors across
* the different processes. Because of this, it is possible that a
* heterogeneous system may return incorrect results without any error
* messages.
*
* Arguments
* =========
*
* NP = the number of rows local to a given process.
* NQ = the number of columns local to a given process.
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only; (NOT IMPLEMENTED YET)
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (global input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/workspace) block cyclic DOUBLE PRECISION array,
* global dimension (N, N), local dimension ( LLD_A,
* LOCc(JA+N-1) )
* On entry, the symmetric matrix A. If UPLO = 'U', only the
* upper triangular part of A is used to define the elements of
* the symmetric matrix. If UPLO = 'L', only the lower
* triangular part of A is used to define the elements of the
* symmetric matrix.
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* W (global output) DOUBLE PRECISION array, dimension (N)
* If INFO=0, the eigenvalues in ascending order.
*
* Z (local output) DOUBLE PRECISION array,
* global dimension (N, N),
* local dimension ( LLD_Z, LOCc(JZ+N-1) )
* Z contains the orthonormal eigenvectors
* of the symmetric matrix A.
*
* IZ (global input) INTEGER
* Z's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JZ (global input) INTEGER
* Z's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
* DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
* WORK (local workspace/output) DOUBLE PRECISION array,
* dimension (LWORK)
* On output, WORK(1) returns the workspace required.
*
* LWORK (local input) INTEGER
* LWORK >= MAX( 1+6*N+2*NP*NQ, TRILWMIN ) + 2*N
* TRILWMIN = 3*N + MAX( NB*( NP+1 ), 3*NB )
* NP = NUMROC( N, NB, MYROW, IAROW, NPROW )
* NQ = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
*
* If LWORK = -1, the LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* size for the WORK array. The required workspace is returned
* as the first element of WORK and no error message is issued
* by PXERBLA.
*
* IWORK (local workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* LIWORK = 7*N + 8*NPCOL + 2
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: The algorithm failed to compute the INFO/(N+1) th
* eigenvalue while working on the submatrix lying in
* global rows and columns mod(INFO,N+1).
*
* Alignment requirements
* ======================
*
* The distributed submatrices sub( A ), sub( Z ) must verify
* some alignment properties, namely the following expression
* should be true:
* ( MB_A.EQ.NB_A.EQ.MB_Z.EQ.NB_Z .AND. IROFFA.EQ.ICOFFA .AND.
* IROFFA.EQ.0 .AND.IROFFA.EQ.IROFFZ. AND. IAROW.EQ.IZROW)
* with IROFFA = MOD( IA-1, MB_A )
* and ICOFFA = MOD( JA-1, NB_A ).
*
* Further Details
* ======= =======
*
* Contributed by Francoise Tisseur, University of Manchester.
*
* Reference: F. Tisseur and J. Dongarra, "A Parallel Divide and
* Conquer Algorithm for the Symmetric Eigenvalue Problem
* on Distributed Memory Architectures",
* SIAM J. Sci. Comput., 6:20 (1999), pp. 2223--2236.
* (see also LAPACK Working Note 132)
* http://www.netlib.org/lapack/lawns/lawn132.ps
*
* =====================================================================
*
* .. Parameters ..
*
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER IACOL, IAROW, ICOFFA, ICOFFZ, ICTXT, IINFO,
$ INDD, INDE, INDE2, INDTAU, INDWORK, INDWORK2,
$ IROFFA, IROFFZ, ISCALE, LIWMIN, LLWORK,
$ LLWORK2, LWMIN, MYCOL, MYROW, NB, NP, NPCOL,
$ NPROW, NQ, OFFSET, TRILWMIN
DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. Local Arrays ..
* ..
INTEGER IDUM1( 2 ), IDUM2( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER INDXG2P, NUMROC
DOUBLE PRECISION PDLAMCH, PDLANSY
EXTERNAL LSAME, INDXG2P, NUMROC, PDLAMCH, PDLANSY
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DSCAL, PCHK1MAT,
$ PDLARED1D, PDLASCL, PDLASET, PDORMTR, PDSTEDC,
$ PDSYTRD, PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, ICHAR, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* Quick return
*
IF( N.EQ.0 )
$ RETURN
*
* Test the input arguments.
*
ICTXT = DESCZ( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 600+CTXT_ )
ELSE
CALL CHK1MAT( N, 3, N, 3, IA, JA, DESCA, 7, INFO )
CALL CHK1MAT( N, 3, N, 3, IZ, JZ, DESCZ, 12, INFO )
IF( INFO.EQ.0 ) THEN
UPPER = LSAME( UPLO, 'U' )
NB = DESCA( NB_ )
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
IROFFZ = MOD( IZ-1, DESCZ( MB_ ) )
ICOFFZ = MOD( JZ-1, DESCZ( NB_ ) )
IAROW = INDXG2P( IA, NB, MYROW, DESCA( RSRC_ ), NPROW )
IACOL = INDXG2P( JA, NB, MYCOL, DESCA( CSRC_ ), NPCOL )
NP = NUMROC( N, NB, MYROW, IAROW, NPROW )
NQ = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
*
LQUERY = ( LWORK.EQ.-1 )
TRILWMIN = 3*N + MAX( NB*( NP+1 ), 3*NB )
LWMIN = MAX( 1+6*N+2*NP*NQ, TRILWMIN ) + 2*N
LIWMIN = 7*N + 8*NPCOL + 2
WORK( 1 ) = DBLE( LWMIN )
IWORK( 1 ) = LIWMIN
IF( .NOT.LSAME( JOBZ, 'V' ) ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( IROFFA.NE.ICOFFA .OR. ICOFFA.NE.0 ) THEN
INFO = -6
ELSE IF( IROFFA.NE.IROFFZ .OR. ICOFFA.NE.ICOFFZ ) THEN
INFO = -10
ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
INFO = -( 1200+M_ )
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 700+NB_ )
ELSE IF( DESCZ( MB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 1200+NB_ )
ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 1200+MB_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 1200+CTXT_ )
ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
INFO = -( 1200+RSRC_ )
ELSE IF( DESCA( CSRC_ ).NE.DESCZ( CSRC_ ) ) THEN
INFO = -( 1200+CSRC_ )
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -14
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -16
END IF
END IF
IF( UPPER ) THEN
IDUM1( 1 ) = ICHAR( 'U' )
ELSE
IDUM1( 1 ) = ICHAR( 'L' )
END IF
IDUM2( 1 ) = 2
IF( LWORK.EQ.-1 ) THEN
IDUM1( 2 ) = -1
ELSE
IDUM1( 2 ) = 1
END IF
IDUM2( 2 ) = 14
CALL PCHK1MAT( N, 3, N, 3, IA, JA, DESCA, 7, 2, IDUM1, IDUM2,
$ INFO )
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDSYEVD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Set up pointers into the WORK array
*
INDTAU = 1
INDE = INDTAU + N
INDD = INDE + N
INDE2 = INDD + N
INDWORK = INDE2 + N
LLWORK = LWORK - INDWORK + 1
INDWORK2 = INDD
LLWORK2 = LWORK - INDWORK2 + 1
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
SAFMIN = PDLAMCH( DESCA( CTXT_ ), 'Safe minimum' )
EPS = PDLAMCH( DESCA( CTXT_ ), 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
ANRM = PDLANSY( 'M', UPLO, N, A, IA, JA, DESCA, WORK( INDWORK ) )
*
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
*
IF( ISCALE.EQ.1 ) THEN
CALL PDLASCL( UPLO, ONE, SIGMA, N, N, A, IA, JA, DESCA, IINFO )
END IF
*
* Reduce symmetric matrix to tridiagonal form.
*
*
CALL PDSYTRD( UPLO, N, A, IA, JA, DESCA, WORK( INDD ),
$ WORK( INDE2 ), WORK( INDTAU ), WORK( INDWORK ),
$ LLWORK, IINFO )
*
* Copy the values of D, E to all processes.
*
CALL PDLARED1D( N, IA, JA, DESCA, WORK( INDD ), W,
$ WORK( INDWORK ), LLWORK )
*
CALL PDLARED1D( N, IA, JA, DESCA, WORK( INDE2 ), WORK( INDE ),
$ WORK( INDWORK ), LLWORK )
*
CALL PDLASET( 'Full', N, N, ZERO, ONE, Z, 1, 1, DESCZ )
*
IF( UPPER ) THEN
OFFSET = 1
ELSE
OFFSET = 0
END IF
CALL PDSTEDC( 'I', N, W, WORK( INDE+OFFSET ), Z, IZ, JZ, DESCZ,
$ WORK( INDWORK2 ), LLWORK2, IWORK, LIWORK, INFO )
*
CALL PDORMTR( 'L', UPLO, 'N', N, N, A, IA, JA, DESCA,
$ WORK( INDTAU ), Z, IZ, JZ, DESCZ, WORK( INDWORK2 ),
$ LLWORK2, IINFO )
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
CALL DSCAL( N, ONE / SIGMA, W, 1 )
END IF
*
RETURN
*
* End of PDSYEVD
*
END
|