File: pdsyttrd.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (1198 lines) | stat: -rw-r--r-- 42,397 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
      SUBROUTINE PDSYTTRD( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
     $                     LWORK, INFO )
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            IA, INFO, JA, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   A( * ), D( * ), E( * ), TAU( * ), WORK( * )
*     ..
*
*     Purpose
*
*     =======
*
*     PDSYTTRD reduces a complex Hermitian matrix sub( A ) to Hermitian
*     tridiagonal form T by an unitary similarity transformation:
*     Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
*     Notes
*     =====
*
*     Each global data object is described by an associated description
*     vector.  This vector stores the information required to establish
*     the mapping between an object element and its corresponding
*     process and memory location.
*
*     Let A be a generic term for any 2D block cyclicly distributed
*     array.
*     Such a global array has an associated description vector DESCA.
*     In the following comments, the character _ should be read as
*     "of the global array".
*
*     NOTATION        STORED IN      EXPLANATION
*     --------------- -------------- -----------------------------------
*     DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*     DTYPE_A = 1.
*     CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle,
*     indicating the BLACS process grid A is distribu-
*     ted over. The context itself is glo-
*     bal, but the handle (the integer
*     value) may vary.
*     M_A    (global) DESCA( M_ )    The number of rows in the global
*     array A.
*     N_A    (global) DESCA( N_ )    The number of columns in the global
*     array A.
*     MB_A   (global) DESCA( MB_ )   The blocking factor used to
*     distribute the rows of the array.
*     NB_A   (global) DESCA( NB_ )   The blocking factor used to
*     distribute the columns of the array.
*     RSRC_A (global) DESCA( RSRC_ ) The process row over which the
*     first row of the array A is distributed.
*     CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*     first column of the array A is
*     distributed.
*     LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*     array.  LLD_A >= MAX(1,LOCp(M_A)).
*
*     Let K be the number of rows or columns of a distributed matrix,
*     and assume that its process grid has dimension p x q.
*     LOCp( K ) denotes the number of elements of K that a process
*     would receive if K were distributed over the p processes of its
*     process column.
*     Similarly, LOCq( K ) denotes the number of elements of K that a
*     process would receive if K were distributed over the q processes
*     of its process row.
*     The values of LOCp() and LOCq() may be determined via a call to
*     the ScaLAPACK tool function, NUMROC:
*     LOCp( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*     LOCq( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*     An upper bound for these quantities may be computed by:
*     LOCp( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*     LOCq( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*     Arguments
*     =========
*
*     UPLO    (global input) CHARACTER
*     Specifies whether the upper or lower triangular part of the
*     Hermitian matrix sub( A ) is stored:
*     = 'U':  Upper triangular
*     = 'L':  Lower triangular
*
*     N       (global input) INTEGER
*     The number of rows and columns to be operated on, i.e. the
*     order of the distributed submatrix sub( A ). N >= 0.
*
*     A  (local input/local output) DOUBLE PRECISION pointer into the
*     local memory to an array of dimension (LLD_A,LOCq(JA+N-1)).
*     On entry, this array contains the local pieces of the
*     Hermitian distributed matrix sub( A ).  If UPLO = 'U', the
*     leading N-by-N upper triangular part of sub( A ) contains
*     the upper triangular part of the matrix, and its strictly
*     lower triangular part is not referenced. If UPLO = 'L', the
*     leading N-by-N lower triangular part of sub( A ) contains the
*     lower triangular part of the matrix, and its strictly upper
*     triangular part is not referenced. On exit, if UPLO = 'U',
*     the diagonal and first superdiagonal of sub( A ) are over-
*     written by the corresponding elements of the tridiagonal
*     matrix T, and the elements above the first superdiagonal,
*     with the array TAU, represent the unitary matrix Q as a
*     product of elementary reflectors; if UPLO = 'L', the diagonal
*     and first subdiagonal of sub( A ) are overwritten by the
*     corresponding elements of the tridiagonal matrix T, and the
*     elements below the first subdiagonal, with the array TAU,
*     represent the unitary matrix Q as a product of elementary
*     reflectors. See Further Details.
*
*     IA      (global input) INTEGER
*     The row index in the global array A indicating the first
*     row of sub( A ).
*
*     JA      (global input) INTEGER
*     The column index in the global array A indicating the
*     first column of sub( A ).
*
*     DESCA   (global and local input) INTEGER array of dimension DLEN_.
*     The array descriptor for the distributed matrix A.
*
*     D       (local output) DOUBLE PRECISION array, dim LOCq(JA+N-1)
*     The diagonal elements of the tridiagonal matrix T:
*     D(i) = A(i,i). D is tied to the distributed matrix A.
*
*     E       (local output) DOUBLE PRECISION array, dim LOCq(JA+N-1)
*     if UPLO = 'U', LOCq(JA+N-2) otherwise. The off-diagonal
*     elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
*     UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
*     distributed matrix A.
*
*     TAU     (local output) DOUBLE PRECISION array, dimension
*     LOCq(JA+N-1). This array contains the scalar factors TAU of
*     the elementary reflectors. TAU is tied to the distributed
*     matrix A.
*
*     WORK  (local workspace) DOUBLE PRECISION array, dimension (LWORK)
*     On exit, WORK( 1 ) returns the minimal and optimal workspace
*
*     LWORK   (local input) INTEGER
*     The dimension of the array WORK.
*     LWORK >= 2*( ANB+1 )*( 4*NPS+2 ) + NPS
*     Where:
*         NPS = MAX( NUMROC( N, 1, 0, 0, NPROW ), 2*ANB )
*         ANB = PJLAENV( DESCA( CTXT_ ), 3, 'PDSYTTRD', 'L', 0, 0,
*           0, 0 )
*
*         NUMROC is a ScaLAPACK tool function;
*         PJLAENV is a ScaLAPACK envionmental inquiry function
*         MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*         the subroutine BLACS_GRIDINFO.
*
*     INFO    (global output) INTEGER
*     = 0:  successful exit
*     < 0:  If the i-th argument is an array and the j-entry had
*     an illegal value, then INFO = -(i*100+j), if the i-th
*     argument is a scalar and had an illegal value, then
*     INFO = -i.
*
*     Further Details
*     ===============
*
*     If UPLO = 'U', the matrix Q is represented as a product of
*     elementary reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*     Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*     where tau is a complex scalar, and v is a complex vector with
*     v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*     A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
*
*     If UPLO = 'L', the matrix Q is represented as a product of
*     elementary reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*     Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*     where tau is a complex scalar, and v is a complex vector with
*     v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
*     A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
*     The contents of sub( A ) on exit are illustrated by the following
*     examples with n = 5:
*
*     if UPLO = 'U':                       if UPLO = 'L':
*
*     (  d   e   v2  v3  v4 )              (  d                  )
*     (      d   e   v3  v4 )              (  e   d              )
*     (          d   e   v4 )              (  v1  e   d          )
*     (              d   e  )              (  v1  v2  e   d      )
*     (                  d  )              (  v1  v2  v3  e   d  )
*
*     where d and e denote diagonal and off-diagonal elements of T, and
*     vi denotes an element of the vector defining H(i).
*
*     Data storage requirements
*     =========================
*
*     PDSYTTRD is not intended to be called directly.  All users are
*     encourage to call PDSYTRD which will then call PDHETTRD if
*     appropriate.  A must be in cyclic format (i.e. MB = NB = 1),
*     the process grid must be square ( i.e. NPROW = NPCOL ) and
*     only lower triangular storage is supported.
*
*     Local variables
*     ===============
*
*     PDSYTTRD uses five local arrays:
*       WORK ( InV ) dimension ( NP, ANB+1): array V
*       WORK ( InH ) dimension ( NP, ANB+1): array H
*       WORK ( InVT ) dimension ( NQ, ANB+1): transpose of the array V
*       WORK ( InHT ) dimension ( NQ, ANB+1): transpose of the array H
*       WORK ( InVTT ) dimension ( NQ, 1): transpose of the array VT
*
*     Arrays V and H are replicated across all processor columns.
*     Arrays V^T and H^T are replicated across all processor rows.
*
*         WORK ( InVT ), or V^T, is stored as a tall skinny
*         array ( NQ x ANB-1 ) for efficiency.  Since only the lower
*         triangular portion of A is updated, Av is computed as:
*         tril(A) * v + v^T * tril(A,-1).  This is performed as
*         two local triangular matrix-vector multiplications (both in
*         MVR2) followed by a transpose and a sum across the columns.
*         In the local computation, WORK( InVT ) is used to compute
*         tril(A) * v and WORK( InV ) is used to compute
*         v^T * tril(A,-1)
*
*     The following variables are global indices into A:
*       INDEX:  The current global row and column number.
*       MAXINDEX:  The global row and column for the first row and
*       column in the trailing block of A.
*       LIIB, LIJB:  The first row, column in
*
*     The following variables point into the arrays A, V, H, V^T, H^T:
*       BINDEX  =INDEX-MININDEX: The column index in V, H, V^T, H^T.
*       LII:  local index I:  The local row number for row INDEX
*       LIJ:  local index J:  The local column number for column INDEX
*       LIIP1:  local index I+1:  The local row number for row INDEX+1
*       LIJP1:  local index J+1:  The local col number for col INDEX+1
*       LTLI: lower triangular local index I:  The local row for the
*         upper left entry in tril( A(INDEX, INDEX) )
*       LTLIP1: lower triangular local index I+1:  The local row for the
*         upper left entry in tril( A(INDEX+1, INDEX+1) )
*
*         Details:  The distinction between LII and LTLI (and between
*         LIIP1 and LTLIP1) is subtle.  Within the current processor
*         column (i.e. MYCOL .eq. CURCOL) they are the same.  However,
*         on some processors, A( LII, LIJ ) points to an element
*         above the diagonal, on these processors, LTLI = LII+1.
*
*     The following variables give the number of rows and/or columns
*     in various matrices:
*       NP:  The number of local rows in A( 1:N, 1:N )
*       NQ:  The number of local columns in A( 1:N, 1:N )
*       NPM0:  The number of local rows in A( INDEX:N, INDEX:N )
*       NQM0:  The number of local columns in A( INDEX:N, INDEX:N )
*       NPM1:  The number of local rows in A( INDEX+1:N, INDEX:N )
*       NQM1:  The number of local columns in A( INDEX+1:N, INDEX:N )
*       LTNM0:  The number of local rows & columns in
*         tril( A( INDEX:N, INDEX:N ) )
*       LTNM1:  The number of local rows & columns in
*         tril( A( INDEX+1:N, INDEX+1:N ) )
*         NOTE:  LTNM0 == LTNM1 on all processors except the diagonal
*         processors, i.e. those where MYCOL == MYROW.
*
*         Invariants:
*           NP = NPM0 + LII - 1
*           NQ = NQM0 + LIJ - 1
*           NP = NPM1 + LIIP1 - 1
*           NQ = NQM1 + LIJP1 - 1
*           NP = LTLI + LTNM0 - 1
*           NP = LTLIP1 + LTNM1 - 1
*
*       Temporary variables.  The following variables are used within
*       a few lines after they are set and do hold state from one loop
*       iteration to the next:
*
*     The matrix A:
*       The matrix A does not hold the same values that it would
*       in an unblocked code nor the values that it would hold in
*       in a blocked code.
*
*       The value of A is confusing.  It is easiest to state the
*       difference between trueA and A at the point that MVR2 is called,
*       so we will start there.
*
*       Let trueA be the value that A would
*       have at a given point in an unblocked code and A
*       be the value that A has in this code at the same point.
*
*       At the time of the call to MVR2,
*       trueA = A + V' * H + H' * V
*       where H = H( MAXINDEX:N, 1:BINDEX ) and
*       V = V( MAXINDEX:N, 1:BINDEX ).
*
*       At the bottom of the inner loop,
*       trueA = A +  V' * H + H' * V + v' * h + h' * v
*       where H = H( MAXINDEX:N, 1:BINDEX ) and
*       V = V( MAXINDEX:N, 1:BINDEX ) and
*       v = V( liip1:N, BINDEX+1 ) and
*       h = H( liip1:N, BINDEX+1 )
*
*       At the top of the loop, BINDEX gets incremented, hence:
*       trueA = A +  V' * H + H' * V + v' * h + h' * v
*       where H = H( MAXINDEX:N, 1:BINDEX-1 ) and
*       V = V( MAXINDEX:N, 1:BINDEX-1 ) and
*       v = V( liip1:N, BINDEX ) and
*       h = H( liip1:N, BINDEX )
*
*
*       A gets updated at the bottom of the outer loop
*       After this update, trueA = A + v' * h + h' * v
*       where v = V( liip1:N, BINDEX ) and
*       h = H( liip1:N, BINDEX ) and BINDEX = 0
*       Indeed, the previous loop invariant as stated above for the
*       top of the loop still holds, but with BINDEX = 0, H and V
*       are null matrices.
*
*       After the current column of A is updated,
*         trueA( INDEX, INDEX:N ) = A( INDEX, INDEX:N )
*       the rest of A is untouched.
*
*       After the current block column of A is updated,
*       trueA = A + V' * H + H' * V
*       where H = H( MAXINDEX:N, 1:BINDEX ) and
*       V = V( MAXINDEX:N, 1:BINDEX )
*
*       This brings us back to the point at which mvr2 is called.
*
*
*     Details of the parallelization:
*
*       We delay spreading v across to all processor columns (which
*       would naturally happen at the bottom of the loop) in order to
*       combine the spread of v( : , i-1 ) with the spread of h( : , i )
*
*       In order to compute h( :, i ), we must update A( :, i )
*       which means that the processor column owning A( :, i ) must
*       have: c, tau, v( i, i ) and h( i, i ).
*
*       The traditional
*       way of computing v (and the one used in pzlatrd.f and
*       zlatrd.f) is:
*         v = tau * v
*         c = v' * h
*         alpha = - tau * c / 2
*         v = v + alpha * h
*       However, the traditional way of computing v requires that tau
*       be broadcast to all processors in the current column (to compute
*       v = tau * v) and then a sum-to-all is required (to
*       compute v' * h ).  We use the following formula instead:
*         c = v' * h
*         v = tau * ( v - c * tau' * h / 2 )
*       The above formula allows tau to be spread down in the
*       same call to DGSUM2D which performs the sum-to-all of c.
*
*       The computation of v, which could be performed in any processor
*       column (or other procesor subsets), is performed in the
*       processor column that owns A( :, i+1 ) so that A( :, i+1 )
*       can be updated prior to spreading v across.
*
*       We keep the block column of A up-to-date to minimize the
*       work required in updating the current column of A.  Updating
*       the block column of A is reasonably load balanced whereas
*       updating the current column of A is not (only the current
*       processor column is involved).
*
*     In the following overview of the steps performed, M in the
*     margin indicates message traffic and C indicates O(n^2 nb/sqrt(p))
*     or more flops per processor.
*
*     Inner loop:
*       A( index:n, index ) -= ( v * ht(bindex) + h * vt( bindex) )
*M      h = house( A(index:n, index) )
*M      Spread v, h across
*M      vt = v^T; ht = h^T
*       A( index+1:n, index+1:maxindex ) -=
*         ( v * ht(index+1:maxindex) + h *vt(index+1:maxindex) )
*C      v = tril(A) * h; vt = ht * tril(A,-1)
*MorC   v = v - H*V*h - V*H*h
*M      v = v + vt^T
*M      c = v' * h
*       v = tau * ( v - c * tau' * h / 2 )
*C    A = A - H*V - V*H
*
*
*
*     =================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      DOUBLE PRECISION   Z_ONE, Z_NEGONE, Z_ZERO
      PARAMETER          ( Z_ONE = 1.0D0, Z_NEGONE = -1.0D0,
     $                   Z_ZERO = 0.0D0 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*
*
*     .. Local Scalars ..
*
*
      LOGICAL            BALANCED, INTERLEAVE, TWOGEMMS, UPPER
      INTEGER            ANB, BINDEX, CURCOL, CURROW, I, ICTXT, INDEX,
     $                   INDEXA, INDEXINH, INDEXINV, INH, INHB, INHT,
     $                   INHTB, INTMP, INV, INVB, INVT, INVTB, J, LDA,
     $                   LDV, LDZG, LII, LIIB, LIIP1, LIJ, LIJB, LIJP1,
     $                   LTLIP1, LTNM1, LWMIN, MAXINDEX, MININDEX,
     $                   MYCOL, MYFIRSTROW, MYROW, MYSETNUM, NBZG, NP,
     $                   NPB, NPCOL, NPM0, NPM1, NPROW, NPS, NPSET, NQ,
     $                   NQB, NQM1, NUMROWS, NXTCOL, NXTROW, PBMAX,
     $                   PBMIN, PBSIZE, PNB, ROWSPERPROC
      DOUBLE PRECISION   ALPHA, BETA, C, CONJTOPH, CONJTOPV, NORM,
     $                   ONEOVERBETA, SAFMAX, SAFMIN, TOPH, TOPNV,
     $                   TOPTAU, TOPV
*     ..
*     .. Local Arrays ..
*
*
*
*
      INTEGER            IDUM1( 1 ), IDUM2( 1 )
      DOUBLE PRECISION   CC( 3 ), DTMP( 5 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DCOMBNRM2, DGEBR2D,
     $                   DGEBS2D, DGEMM, DGEMV, DGERV2D, DGESD2D,
     $                   DGSUM2D, DLAMOV, DSCAL, DTRMVT, PCHK1MAT,
     $                   PDTREECOMB, PXERBLA
*     ..
*     .. External Functions ..
*
      LOGICAL            LSAME
      INTEGER            ICEIL, NUMROC, PJLAENV
      DOUBLE PRECISION   DNRM2, PDLAMCH
      EXTERNAL           LSAME, ICEIL, NUMROC, PJLAENV, DNRM2, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, ICHAR, MAX, MIN, MOD, SIGN, SQRT
*     ..
*
*
*     .. Executable Statements ..
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*
*
*     Further details
*     ===============
*
*     At the top of the loop, v and nh have been computed but not
*     spread across.  Hence, A is out-of-date even after the
*     rank 2k update.  Furthermore, we compute the next v before
*     nh is spread across.
*
*     I claim that if we used a sum-to-all on NV, by summing CC within
*     each column, that we could compute NV locally and could avoid
*     spreading V across.  Bruce claims that sum-to-all can be made
*     to cost no more than sum-to-one on the Paragon.  If that is
*     true, this would be a win.  But,
*     the BLACS sum-to-all is just a sum-to-one followed by a broadcast,
*     and hence the present scheme is better for now.
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      SAFMAX = SQRT( PDLAMCH( ICTXT, 'O' ) ) / N
      SAFMIN = SQRT( PDLAMCH( ICTXT, 'S' ) )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 600+CTXT_ )
      ELSE
*
*     Here we set execution options for PDSYTTRD
*
         PNB = PJLAENV( ICTXT, 2, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
         ANB = PJLAENV( ICTXT, 3, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
*
         INTERLEAVE = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 1, 0, 0,
     $                0 ).EQ.1 )
         TWOGEMMS = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 2, 0, 0,
     $              0 ).EQ.1 )
         BALANCED = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 3, 0, 0,
     $              0 ).EQ.1 )
*
         CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
*
*
         UPPER = LSAME( UPLO, 'U' )
         IF( INFO.EQ.0 .AND. DESCA( NB_ ).NE.1 )
     $      INFO = 600 + NB_
         IF( INFO.EQ.0 ) THEN
*
*
*           Here is the arithmetic:
*             Let maxnpq = max( np, nq, 2 * ANB )
*             LDV = 4 * max( np, nq ) + 2
*             LWMIN = 2 * ( ANB + 1 ) * LDV + MAX( np, 2 * ANB )
*             = 2 * ( ANB + 1 ) * ( 4 * NPS + 2 ) + NPS
*
*           This overestimates memory requirements when ANB > NP/2
*           Memory requirements are lower when interleave = .false.
*           Hence, we could have two sets of memory requirements,
*           one for interleave and one for
*
*
            NPS = MAX( NUMROC( N, 1, 0, 0, NPROW ), 2*ANB )
            LWMIN = 2*( ANB+1 )*( 4*NPS+2 ) + NPS
*
            WORK( 1 ) = DBLE( LWMIN )
            IF( .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -1
            ELSE IF( IA.NE.1 ) THEN
               INFO = -4
            ELSE IF( JA.NE.1 ) THEN
               INFO = -5
            ELSE IF( NPROW.NE.NPCOL ) THEN
               INFO = -( 600+CTXT_ )
            ELSE IF( DESCA( DTYPE_ ).NE.1 ) THEN
               INFO = -( 600+DTYPE_ )
            ELSE IF( DESCA( MB_ ).NE.1 ) THEN
               INFO = -( 600+MB_ )
            ELSE IF( DESCA( NB_ ).NE.1 ) THEN
               INFO = -( 600+NB_ )
            ELSE IF( DESCA( RSRC_ ).NE.0 ) THEN
               INFO = -( 600+RSRC_ )
            ELSE IF( DESCA( CSRC_ ).NE.0 ) THEN
               INFO = -( 600+CSRC_ )
            ELSE IF( LWORK.LT.LWMIN ) THEN
               INFO = -11
            END IF
         END IF
         IF( UPPER ) THEN
            IDUM1( 1 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'L' )
         END IF
         IDUM2( 1 ) = 1
*
         CALL PCHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, 1, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDSYTTRD', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*
*
*     Reduce the lower triangle of sub( A )
      NP = NUMROC( N, 1, MYROW, 0, NPROW )
      NQ = NUMROC( N, 1, MYCOL, 0, NPCOL )
*
      NXTROW = 0
      NXTCOL = 0
*
      LIIP1 = 1
      LIJP1 = 1
      NPM1 = NP
      NQM1 = NQ
*
      LDA = DESCA( LLD_ )
      ICTXT = DESCA( CTXT_ )
*
*
*
*     Miscellaneous details:
*     Put tau, D and E in the right places
*     Check signs
*     Place all the arrays in WORK, control their placement
*     in  memory.
*
*
*
*     Loop invariants
*     A(LIIP1, LIJ) points to the first element of A(I+1,J)
*     NPM1,NQM1 = the number of rows, cols in A( LII+1:N,LIJ+1:N )
*     A(LII:N,LIJ:N) is one step out of date.
*     proc( CURROW, CURCOL ) owns A(LII,LIJ)
*     proc( NXTROW, CURCOL ) owns A(LIIP1,LIJ)
*
      INH = 1
*
      IF( INTERLEAVE ) THEN
*
*        H and V are interleaved to minimize memory movement
*        LDV has to be twice as large to accomodate interleaving.
*        In addition, LDV is doubled again to allow v, h and
*        toptau to be spreaad across and transposed in a
*        single communication operation with minimum memory
*        movement.
*
*        We could reduce LDV back to 2*MAX(NPM1,NQM1)
*        by increasing the memory movement required in
*        the spread and transpose of v, h and toptau.
*        However, since the non-interleaved path already
*        provides a mear minimum memory requirement option,
*        we did not provide this additional path.
*
         LDV = 4*( MAX( NPM1, NQM1 ) ) + 2
*
         INH = 1
*
         INV = INH + LDV / 2
         INVT = INH + ( ANB+1 )*LDV
*
         INHT = INVT + LDV / 2
         INTMP = INVT + LDV*( ANB+1 )
*
      ELSE
         LDV = MAX( NPM1, NQM1 )
*
         INHT = INH + LDV*( ANB+1 )
         INV = INHT + LDV*( ANB+1 )
*
*        The code works without this +1, but only because of a
*        coincidence.  Without the +1, WORK(INVT) gets trashed, but
*        WORK(INVT) is only used once and when it is used, it is
*        multiplied by WORK( INH ) which is zero.  Hence, the fact
*        that WORK(INVT) is trashed has no effect.
*
         INVT = INV + LDV*( ANB+1 ) + 1
         INTMP = INVT + LDV*( 2*ANB )
*
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDSYTTRD', -INFO )
         WORK( 1 ) = DBLE( LWMIN )
         RETURN
      END IF
*
*
*        The satisfies the loop invariant: trueA = A - V * HT - H * VT,
*        (where V, H, VT and HT all have BINDEX+1 rows/columns)
*        the first ANB times through the loop.
*
*
*
*     Setting either ( InH and InHT ) or InV to Z_ZERO
*     is adequate except in the face of NaNs.
*
*
      DO 10 I = 1, NP
         WORK( INH+I-1 ) = Z_ZERO
         WORK( INV+I-1 ) = Z_ZERO
   10 CONTINUE
      DO 20 I = 1, NQ
         WORK( INHT+I-1 ) = Z_ZERO
   20 CONTINUE
*
*
*
      TOPNV = Z_ZERO
*
      LTLIP1 = LIJP1
      LTNM1 = NPM1
      IF( MYCOL.GT.MYROW ) THEN
         LTLIP1 = LTLIP1 + 1
         LTNM1 = LTNM1 - 1
      END IF
*
*
      DO 210 MININDEX = 1, N - 1, ANB
*
*
         MAXINDEX = MIN( MININDEX+ANB-1, N )
         LIJB = NUMROC( MAXINDEX, 1, MYCOL, 0, NPCOL ) + 1
         LIIB = NUMROC( MAXINDEX, 1, MYROW, 0, NPROW ) + 1
*
         NQB = NQ - LIJB + 1
         NPB = NP - LIIB + 1
         INHTB = INHT + LIJB - 1
         INVTB = INVT + LIJB - 1
         INHB = INH + LIIB - 1
         INVB = INV + LIIB - 1
*
*
*
*
         DO 160 INDEX = MININDEX, MIN( MAXINDEX, N-1 )
*
            BINDEX = INDEX - MININDEX
*
            CURROW = NXTROW
            CURCOL = NXTCOL
*
            NXTROW = MOD( CURROW+1, NPROW )
            NXTCOL = MOD( CURCOL+1, NPCOL )
*
            LII = LIIP1
            LIJ = LIJP1
            NPM0 = NPM1
*
            IF( MYROW.EQ.CURROW ) THEN
               NPM1 = NPM1 - 1
               LIIP1 = LIIP1 + 1
            END IF
            IF( MYCOL.EQ.CURCOL ) THEN
               NQM1 = NQM1 - 1
               LIJP1 = LIJP1 + 1
               LTLIP1 = LTLIP1 + 1
               LTNM1 = LTNM1 - 1
            END IF
*
*
*
*
*     V = NV, VT = NVT, H = NH, HT = NHT
*
*
*     Update the current column of A
*
*
            IF( MYCOL.EQ.CURCOL ) THEN
*
               INDEXA = LII + ( LIJ-1 )*LDA
               INDEXINV = INV + LII - 1 + ( BINDEX-1 )*LDV
               INDEXINH = INH + LII - 1 + ( BINDEX-1 )*LDV
               CONJTOPH = WORK( INHT+LIJ-1+BINDEX*LDV )
               CONJTOPV = TOPNV
*
               IF( INDEX.GT.1 ) THEN
                  DO 30 I = 0, NPM0 - 1
*                  A( INDEXA+I ) = A( INDEXA+I )
                     A( INDEXA+I ) = A( INDEXA+I ) -
     $                               WORK( INDEXINV+LDV+I )*CONJTOPH -
     $                               WORK( INDEXINH+LDV+I )*CONJTOPV
   30             CONTINUE
               END IF
*
*
            END IF
*
*
            IF( MYCOL.EQ.CURCOL ) THEN
*
*     Compute the householder vector
*
               IF( MYROW.EQ.CURROW ) THEN
                  DTMP( 2 ) = A( LII+( LIJ-1 )*LDA )
               ELSE
                  DTMP( 2 ) = ZERO
               END IF
               IF( MYROW.EQ.NXTROW ) THEN
                  DTMP( 3 ) = A( LIIP1+( LIJ-1 )*LDA )
                  DTMP( 4 ) = ZERO
               ELSE
                  DTMP( 3 ) = ZERO
                  DTMP( 4 ) = ZERO
               END IF
*
               NORM = DNRM2( NPM1, A( LIIP1+( LIJ-1 )*LDA ), 1 )
               DTMP( 1 ) = NORM
*
*              IF DTMP(5) = 1.0, NORM is too large and might cause
*              overflow, hence PDTREECOMB must be called.  IF DTMP(5)
*              is zero on output, DTMP(1) can be trusted.
*
               DTMP( 5 ) = ZERO
               IF( DTMP( 1 ).GE.SAFMAX .OR. DTMP( 1 ).LT.SAFMIN ) THEN
                  DTMP( 5 ) = ONE
                  DTMP( 1 ) = ZERO
               END IF
*
               DTMP( 1 ) = DTMP( 1 )*DTMP( 1 )
               CALL DGSUM2D( ICTXT, 'C', ' ', 5, 1, DTMP, 5, -1,
     $                       CURCOL )
               IF( DTMP( 5 ).EQ.ZERO ) THEN
                  DTMP( 1 ) = SQRT( DTMP( 1 ) )
               ELSE
                  DTMP( 1 ) = NORM
                  CALL PDTREECOMB( ICTXT, 'C', 1, DTMP, -1, MYCOL,
     $                             DCOMBNRM2 )
               END IF
*
               NORM = DTMP( 1 )
*
               D( LIJ ) = DTMP( 2 )
               IF( MYROW.EQ.CURROW .AND. MYCOL.EQ.CURCOL ) THEN
                  A( LII+( LIJ-1 )*LDA ) = D( LIJ )
               END IF
*
*
               ALPHA = DTMP( 3 )
*
               NORM = SIGN( NORM, ALPHA )
*
               IF( NORM.EQ.ZERO ) THEN
                  TOPTAU = ZERO
               ELSE
                  BETA = NORM + ALPHA
                  TOPTAU = BETA / NORM
                  ONEOVERBETA = 1.0D0 / BETA
*
                  CALL DSCAL( NPM1, ONEOVERBETA,
     $                        A( LIIP1+( LIJ-1 )*LDA ), 1 )
               END IF
*
               IF( MYROW.EQ.NXTROW ) THEN
                  A( LIIP1+( LIJ-1 )*LDA ) = Z_ONE
               END IF
*
               TAU( LIJ ) = TOPTAU
               E( LIJ ) = -NORM
*
            END IF
*
*
*     Spread v, nh, toptau across
*
            DO 40 I = 0, NPM1 - 1
               WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+I ) = A( LIIP1+I+
     $            ( LIJ-1 )*LDA )
   40       CONTINUE
*
            IF( MYCOL.EQ.CURCOL ) THEN
               WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+NPM1 ) = TOPTAU
               CALL DGEBS2D( ICTXT, 'R', ' ', NPM1+NPM1+1, 1,
     $                       WORK( INV+LIIP1-1+BINDEX*LDV ),
     $                       NPM1+NPM1+1 )
            ELSE
               CALL DGEBR2D( ICTXT, 'R', ' ', NPM1+NPM1+1, 1,
     $                       WORK( INV+LIIP1-1+BINDEX*LDV ),
     $                       NPM1+NPM1+1, MYROW, CURCOL )
               TOPTAU = WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+NPM1 )
            END IF
            DO 50 I = 0, NPM1 - 1
               WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+I ) = WORK( INV+LIIP1-
     $            1+BINDEX*LDV+NPM1+I )
   50       CONTINUE
*
            IF( INDEX.LT.N ) THEN
               IF( MYROW.EQ.NXTROW .AND. MYCOL.EQ.CURCOL )
     $            A( LIIP1+( LIJ-1 )*LDA ) = E( LIJ )
            END IF
*
*     Transpose v, nh
*
*
            IF( MYROW.EQ.MYCOL ) THEN
               DO 60 I = 0, NPM1 + NPM1
                  WORK( INVT+LIJP1-1+BINDEX*LDV+I ) = WORK( INV+LIIP1-1+
     $               BINDEX*LDV+I )
   60          CONTINUE
            ELSE
               CALL DGESD2D( ICTXT, NPM1+NPM1, 1,
     $                       WORK( INV+LIIP1-1+BINDEX*LDV ), NPM1+NPM1,
     $                       MYCOL, MYROW )
               CALL DGERV2D( ICTXT, NQM1+NQM1, 1,
     $                       WORK( INVT+LIJP1-1+BINDEX*LDV ), NQM1+NQM1,
     $                       MYCOL, MYROW )
            END IF
*
            DO 70 I = 0, NQM1 - 1
               WORK( INHT+LIJP1-1+( BINDEX+1 )*LDV+I ) = WORK( INVT+
     $            LIJP1-1+BINDEX*LDV+NQM1+I )
   70       CONTINUE
*
*
*           Update the current block column of A
*
            IF( INDEX.GT.1 ) THEN
               DO 90 J = LIJP1, LIJB - 1
                  DO 80 I = 0, NPM1 - 1
*
                     A( LIIP1+I+( J-1 )*LDA ) = A( LIIP1+I+( J-1 )*LDA )
     $                   - WORK( INV+LIIP1-1+BINDEX*LDV+I )*
     $                  WORK( INHT+J-1+BINDEX*LDV ) -
     $                  WORK( INH+LIIP1-1+BINDEX*LDV+I )*
     $                  WORK( INVT+J-1+BINDEX*LDV )
   80             CONTINUE
   90          CONTINUE
            END IF
*
*
*
*     Compute NV = A * NHT; NVT = A * NH
*
*           These two lines are necessary because these elements
*           are not always involved in the calls to DTRMVT
*           for two reasons:
*           1)  On diagonal processors, the call to TRMVT
*               involves only LTNM1-1 elements
*           2)  On some processes, NQM1 < LTM1 or  LIIP1 < LTLIP1
*               and when the results are combined across all processes,
*               uninitialized values may be included.
            WORK( INV+LIIP1-1+( BINDEX+1 )*LDV ) = Z_ZERO
            WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV+NQM1-1 ) = Z_ZERO
*
*
            IF( MYROW.EQ.MYCOL ) THEN
               IF( LTNM1.GT.1 ) THEN
                  CALL DTRMVT( 'L', LTNM1-1,
     $                         A( LTLIP1+1+( LIJP1-1 )*LDA ), LDA,
     $                         WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV ), 1,
     $                         WORK( INH+LTLIP1+1-1+( BINDEX+1 )*LDV ),
     $                         1, WORK( INV+LTLIP1+1-1+( BINDEX+1 )*
     $                         LDV ), 1, WORK( INHT+LIJP1-1+( BINDEX+
     $                         1 )*LDV ), 1 )
               END IF
               DO 100 I = 1, LTNM1
                  WORK( INVT+LIJP1+I-1-1+( BINDEX+1 )*LDV )
     $               = WORK( INVT+LIJP1+I-1-1+( BINDEX+1 )*LDV ) +
     $               A( LTLIP1+I-1+( LIJP1+I-1-1 )*LDA )*
     $               WORK( INH+LTLIP1+I-1-1+( BINDEX+1 )*LDV )
  100          CONTINUE
            ELSE
               IF( LTNM1.GT.0 )
     $            CALL DTRMVT( 'L', LTNM1, A( LTLIP1+( LIJP1-1 )*LDA ),
     $                         LDA, WORK( INVT+LIJP1-1+( BINDEX+1 )*
     $                         LDV ), 1, WORK( INH+LTLIP1-1+( BINDEX+
     $                         1 )*LDV ), 1, WORK( INV+LTLIP1-1+
     $                         ( BINDEX+1 )*LDV ), 1,
     $                         WORK( INHT+LIJP1-1+( BINDEX+1 )*LDV ),
     $                         1 )
*
            END IF
*
*
*     We take advantage of the fact that:
*     A * sum( B ) = sum ( A * B ) for matrices A,B
*
*     trueA = A + V * HT + H * VT
*     hence:  (trueA)v = Av' + V * HT * v + H * VT * v
*     VT * v = sum_p_in_NPROW ( VTp * v )
*     H * VT * v = H * sum (VTp * v) = sum ( H * VTp * v )
*
*     v = v + V * HT * h + H * VT * h
*
*
*
*     tmp = HT * nh1
            DO 110 I = 1, 2*( BINDEX+1 )
               WORK( INTMP-1+I ) = 0
  110       CONTINUE
*
            IF( BALANCED ) THEN
               NPSET = NPROW
               MYSETNUM = MYROW
               ROWSPERPROC = ICEIL( NQB, NPSET )
               MYFIRSTROW = MIN( NQB+1, 1+ROWSPERPROC*MYSETNUM )
               NUMROWS = MIN( ROWSPERPROC, NQB-MYFIRSTROW+1 )
*
*
*     tmp = HT * v
*
               CALL DGEMV( 'C', NUMROWS, BINDEX+1, Z_ONE,
     $                     WORK( INHTB+MYFIRSTROW-1 ), LDV,
     $                     WORK( INHTB+MYFIRSTROW-1+( BINDEX+1 )*LDV ),
     $                     1, Z_ZERO, WORK( INTMP ), 1 )
*     tmp2 = VT * v
               CALL DGEMV( 'C', NUMROWS, BINDEX+1, Z_ONE,
     $                     WORK( INVTB+MYFIRSTROW-1 ), LDV,
     $                     WORK( INHTB+MYFIRSTROW-1+( BINDEX+1 )*LDV ),
     $                     1, Z_ZERO, WORK( INTMP+BINDEX+1 ), 1 )
*
*
               CALL DGSUM2D( ICTXT, 'C', ' ', 2*( BINDEX+1 ), 1,
     $                       WORK( INTMP ), 2*( BINDEX+1 ), -1, -1 )
            ELSE
*     tmp = HT * v
*
               CALL DGEMV( 'C', NQB, BINDEX+1, Z_ONE, WORK( INHTB ),
     $                     LDV, WORK( INHTB+( BINDEX+1 )*LDV ), 1,
     $                     Z_ZERO, WORK( INTMP ), 1 )
*     tmp2 = VT * v
               CALL DGEMV( 'C', NQB, BINDEX+1, Z_ONE, WORK( INVTB ),
     $                     LDV, WORK( INHTB+( BINDEX+1 )*LDV ), 1,
     $                     Z_ZERO, WORK( INTMP+BINDEX+1 ), 1 )
*
            END IF
*
*
*
            IF( BALANCED ) THEN
               MYSETNUM = MYCOL
*
               ROWSPERPROC = ICEIL( NPB, NPSET )
               MYFIRSTROW = MIN( NPB+1, 1+ROWSPERPROC*MYSETNUM )
               NUMROWS = MIN( ROWSPERPROC, NPB-MYFIRSTROW+1 )
*
               CALL DGSUM2D( ICTXT, 'R', ' ', 2*( BINDEX+1 ), 1,
     $                       WORK( INTMP ), 2*( BINDEX+1 ), -1, -1 )
*
*
*     v = v + V * tmp
               IF( INDEX.GT.1. ) THEN
                  CALL DGEMV( 'N', NUMROWS, BINDEX+1, Z_NEGONE,
     $                        WORK( INVB+MYFIRSTROW-1 ), LDV,
     $                        WORK( INTMP ), 1, Z_ONE,
     $                        WORK( INVB+MYFIRSTROW-1+( BINDEX+1 )*
     $                        LDV ), 1 )
*
*     v = v + H * tmp2
                  CALL DGEMV( 'N', NUMROWS, BINDEX+1, Z_NEGONE,
     $                        WORK( INHB+MYFIRSTROW-1 ), LDV,
     $                        WORK( INTMP+BINDEX+1 ), 1, Z_ONE,
     $                        WORK( INVB+MYFIRSTROW-1+( BINDEX+1 )*
     $                        LDV ), 1 )
               END IF
*
            ELSE
*     v = v + V * tmp
               CALL DGEMV( 'N', NPB, BINDEX+1, Z_NEGONE, WORK( INVB ),
     $                     LDV, WORK( INTMP ), 1, Z_ONE,
     $                     WORK( INVB+( BINDEX+1 )*LDV ), 1 )
*
*
*     v = v + H * tmp2
               CALL DGEMV( 'N', NPB, BINDEX+1, Z_NEGONE, WORK( INHB ),
     $                     LDV, WORK( INTMP+BINDEX+1 ), 1, Z_ONE,
     $                     WORK( INVB+( BINDEX+1 )*LDV ), 1 )
*
            END IF
*
*
*     Transpose NV and add it back into NVT
*
            IF( MYROW.EQ.MYCOL ) THEN
               DO 120 I = 0, NQM1 - 1
                  WORK( INTMP+I ) = WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV+
     $                              I )
  120          CONTINUE
            ELSE
               CALL DGESD2D( ICTXT, NQM1, 1,
     $                       WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV ),
     $                       NQM1, MYCOL, MYROW )
               CALL DGERV2D( ICTXT, NPM1, 1, WORK( INTMP ), NPM1, MYCOL,
     $                       MYROW )
*
            END IF
            DO 130 I = 0, NPM1 - 1
               WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I ) = WORK( INV+LIIP1-
     $            1+( BINDEX+1 )*LDV+I ) + WORK( INTMP+I )
  130       CONTINUE
*
*     Sum-to-one NV rowwise (within a row)
*
            CALL DGSUM2D( ICTXT, 'R', ' ', NPM1, 1,
     $                    WORK( INV+LIIP1-1+( BINDEX+1 )*LDV ), NPM1,
     $                    MYROW, NXTCOL )
*
*
*     Dot product c = NV * NH
*     Sum-to-all c within next processor column
*
*
            IF( MYCOL.EQ.NXTCOL ) THEN
               CC( 1 ) = Z_ZERO
               DO 140 I = 0, NPM1 - 1
                  CC( 1 ) = CC( 1 ) + WORK( INV+LIIP1-1+( BINDEX+1 )*
     $                      LDV+I )*WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+
     $                      I )
  140          CONTINUE
               IF( MYROW.EQ.NXTROW ) THEN
                  CC( 2 ) = WORK( INV+LIIP1-1+( BINDEX+1 )*LDV )
                  CC( 3 ) = WORK( INH+LIIP1-1+( BINDEX+1 )*LDV )
               ELSE
                  CC( 2 ) = Z_ZERO
                  CC( 3 ) = Z_ZERO
               END IF
               CALL DGSUM2D( ICTXT, 'C', ' ', 3, 1, CC, 3, -1, NXTCOL )
*
               TOPV = CC( 2 )
               C = CC( 1 )
               TOPH = CC( 3 )
*
               TOPNV = TOPTAU*( TOPV-C*TOPTAU / 2*TOPH )
*
*
*     Compute V = Tau * (V - C * Tau' / 2 * H )
*
*
               DO 150 I = 0, NPM1 - 1
                  WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I ) = TOPTAU*
     $               ( WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I )-C*TOPTAU /
     $               2*WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+I ) )
  150          CONTINUE
*
            END IF
*
*
  160    CONTINUE
*
*
*     Perform the rank2k update
*
         IF( MAXINDEX.LT.N ) THEN
*
            DO 170 I = 0, NPM1 - 1
               WORK( INTMP+I ) = WORK( INH+LIIP1-1+ANB*LDV+I )
  170       CONTINUE
*
*
*
            IF( .NOT.TWOGEMMS ) THEN
               IF( INTERLEAVE ) THEN
                  LDZG = LDV / 2
               ELSE
                  CALL DLAMOV( 'A', LTNM1, ANB, WORK( INHT+LIJP1-1 ),
     $                         LDV, WORK( INVT+LIJP1-1+ANB*LDV ), LDV )
*
                  CALL DLAMOV( 'A', LTNM1, ANB, WORK( INV+LTLIP1-1 ),
     $                         LDV, WORK( INH+LTLIP1-1+ANB*LDV ), LDV )
                  LDZG = LDV
               END IF
               NBZG = ANB*2
            ELSE
               LDZG = LDV
               NBZG = ANB
            END IF
*
*
            DO 180 PBMIN = 1, LTNM1, PNB
*
               PBSIZE = MIN( PNB, LTNM1-PBMIN+1 )
               PBMAX = MIN( LTNM1, PBMIN+PNB-1 )
               CALL DGEMM( 'N', 'C', PBSIZE, PBMAX, NBZG, Z_NEGONE,
     $                     WORK( INH+LTLIP1-1+PBMIN-1 ), LDZG,
     $                     WORK( INVT+LIJP1-1 ), LDZG, Z_ONE,
     $                     A( LTLIP1+PBMIN-1+( LIJP1-1 )*LDA ), LDA )
               IF( TWOGEMMS ) THEN
                  CALL DGEMM( 'N', 'C', PBSIZE, PBMAX, ANB, Z_NEGONE,
     $                        WORK( INV+LTLIP1-1+PBMIN-1 ), LDZG,
     $                        WORK( INHT+LIJP1-1 ), LDZG, Z_ONE,
     $                        A( LTLIP1+PBMIN-1+( LIJP1-1 )*LDA ), LDA )
               END IF
  180       CONTINUE
*
*
*
            DO 190 I = 0, NPM1 - 1
               WORK( INV+LIIP1-1+I ) = WORK( INV+LIIP1-1+ANB*LDV+I )
               WORK( INH+LIIP1-1+I ) = WORK( INTMP+I )
  190       CONTINUE
            DO 200 I = 0, NQM1 - 1
               WORK( INHT+LIJP1-1+I ) = WORK( INHT+LIJP1-1+ANB*LDV+I )
  200       CONTINUE
*
*
         END IF
*
*     End of the update A code
*
  210 CONTINUE
*
      IF( MYCOL.EQ.NXTCOL ) THEN
         IF( MYROW.EQ.NXTROW ) THEN
*
            D( NQ ) = A( NP+( NQ-1 )*LDA )
*
            CALL DGEBS2D( ICTXT, 'C', ' ', 1, 1, D( NQ ), 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'C', ' ', 1, 1, D( NQ ), 1, NXTROW,
     $                    NXTCOL )
         END IF
      END IF
*
*
*
*
      WORK( 1 ) = DBLE( LWMIN )
      RETURN
*
*     End of PDSYTTRD
*
*
      END