1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
SUBROUTINE PDSYTTRD( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
$ LWORK, INFO )
*
* -- ScaLAPACK routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER IA, INFO, JA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * ), D( * ), E( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
*
* =======
*
* PDSYTTRD reduces a complex Hermitian matrix sub( A ) to Hermitian
* tridiagonal form T by an unitary similarity transformation:
* Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding
* process and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed
* array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- -----------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle,
* indicating the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to
* distribute the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to
* distribute the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the
* first row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCp(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCp( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCq( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes
* of its process row.
* The values of LOCp() and LOCq() may be determined via a call to
* the ScaLAPACK tool function, NUMROC:
* LOCp( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCq( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCp( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCq( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix sub( A ) is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) DOUBLE PRECISION pointer into the
* local memory to an array of dimension (LLD_A,LOCq(JA+N-1)).
* On entry, this array contains the local pieces of the
* Hermitian distributed matrix sub( A ). If UPLO = 'U', the
* leading N-by-N upper triangular part of sub( A ) contains
* the upper triangular part of the matrix, and its strictly
* lower triangular part is not referenced. If UPLO = 'L', the
* leading N-by-N lower triangular part of sub( A ) contains the
* lower triangular part of the matrix, and its strictly upper
* triangular part is not referenced. On exit, if UPLO = 'U',
* the diagonal and first superdiagonal of sub( A ) are over-
* written by the corresponding elements of the tridiagonal
* matrix T, and the elements above the first superdiagonal,
* with the array TAU, represent the unitary matrix Q as a
* product of elementary reflectors; if UPLO = 'L', the diagonal
* and first subdiagonal of sub( A ) are overwritten by the
* corresponding elements of the tridiagonal matrix T, and the
* elements below the first subdiagonal, with the array TAU,
* represent the unitary matrix Q as a product of elementary
* reflectors. See Further Details.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* D (local output) DOUBLE PRECISION array, dim LOCq(JA+N-1)
* The diagonal elements of the tridiagonal matrix T:
* D(i) = A(i,i). D is tied to the distributed matrix A.
*
* E (local output) DOUBLE PRECISION array, dim LOCq(JA+N-1)
* if UPLO = 'U', LOCq(JA+N-2) otherwise. The off-diagonal
* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
* distributed matrix A.
*
* TAU (local output) DOUBLE PRECISION array, dimension
* LOCq(JA+N-1). This array contains the scalar factors TAU of
* the elementary reflectors. TAU is tied to the distributed
* matrix A.
*
* WORK (local workspace) DOUBLE PRECISION array, dimension (LWORK)
* On exit, WORK( 1 ) returns the minimal and optimal workspace
*
* LWORK (local input) INTEGER
* The dimension of the array WORK.
* LWORK >= 2*( ANB+1 )*( 4*NPS+2 ) + NPS
* Where:
* NPS = MAX( NUMROC( N, 1, 0, 0, NPROW ), 2*ANB )
* ANB = PJLAENV( DESCA( CTXT_ ), 3, 'PDSYTTRD', 'L', 0, 0,
* 0, 0 )
*
* NUMROC is a ScaLAPACK tool function;
* PJLAENV is a ScaLAPACK envionmental inquiry function
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Further Details
* ===============
*
* If UPLO = 'U', the matrix Q is represented as a product of
* elementary reflectors
*
* Q = H(n-1) . . . H(2) H(1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
* A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
*
* If UPLO = 'L', the matrix Q is represented as a product of
* elementary reflectors
*
* Q = H(1) H(2) . . . H(n-1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
* A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
* The contents of sub( A ) on exit are illustrated by the following
* examples with n = 5:
*
* if UPLO = 'U': if UPLO = 'L':
*
* ( d e v2 v3 v4 ) ( d )
* ( d e v3 v4 ) ( e d )
* ( d e v4 ) ( v1 e d )
* ( d e ) ( v1 v2 e d )
* ( d ) ( v1 v2 v3 e d )
*
* where d and e denote diagonal and off-diagonal elements of T, and
* vi denotes an element of the vector defining H(i).
*
* Data storage requirements
* =========================
*
* PDSYTTRD is not intended to be called directly. All users are
* encourage to call PDSYTRD which will then call PDHETTRD if
* appropriate. A must be in cyclic format (i.e. MB = NB = 1),
* the process grid must be square ( i.e. NPROW = NPCOL ) and
* only lower triangular storage is supported.
*
* Local variables
* ===============
*
* PDSYTTRD uses five local arrays:
* WORK ( InV ) dimension ( NP, ANB+1): array V
* WORK ( InH ) dimension ( NP, ANB+1): array H
* WORK ( InVT ) dimension ( NQ, ANB+1): transpose of the array V
* WORK ( InHT ) dimension ( NQ, ANB+1): transpose of the array H
* WORK ( InVTT ) dimension ( NQ, 1): transpose of the array VT
*
* Arrays V and H are replicated across all processor columns.
* Arrays V^T and H^T are replicated across all processor rows.
*
* WORK ( InVT ), or V^T, is stored as a tall skinny
* array ( NQ x ANB-1 ) for efficiency. Since only the lower
* triangular portion of A is updated, Av is computed as:
* tril(A) * v + v^T * tril(A,-1). This is performed as
* two local triangular matrix-vector multiplications (both in
* MVR2) followed by a transpose and a sum across the columns.
* In the local computation, WORK( InVT ) is used to compute
* tril(A) * v and WORK( InV ) is used to compute
* v^T * tril(A,-1)
*
* The following variables are global indices into A:
* INDEX: The current global row and column number.
* MAXINDEX: The global row and column for the first row and
* column in the trailing block of A.
* LIIB, LIJB: The first row, column in
*
* The following variables point into the arrays A, V, H, V^T, H^T:
* BINDEX =INDEX-MININDEX: The column index in V, H, V^T, H^T.
* LII: local index I: The local row number for row INDEX
* LIJ: local index J: The local column number for column INDEX
* LIIP1: local index I+1: The local row number for row INDEX+1
* LIJP1: local index J+1: The local col number for col INDEX+1
* LTLI: lower triangular local index I: The local row for the
* upper left entry in tril( A(INDEX, INDEX) )
* LTLIP1: lower triangular local index I+1: The local row for the
* upper left entry in tril( A(INDEX+1, INDEX+1) )
*
* Details: The distinction between LII and LTLI (and between
* LIIP1 and LTLIP1) is subtle. Within the current processor
* column (i.e. MYCOL .eq. CURCOL) they are the same. However,
* on some processors, A( LII, LIJ ) points to an element
* above the diagonal, on these processors, LTLI = LII+1.
*
* The following variables give the number of rows and/or columns
* in various matrices:
* NP: The number of local rows in A( 1:N, 1:N )
* NQ: The number of local columns in A( 1:N, 1:N )
* NPM0: The number of local rows in A( INDEX:N, INDEX:N )
* NQM0: The number of local columns in A( INDEX:N, INDEX:N )
* NPM1: The number of local rows in A( INDEX+1:N, INDEX:N )
* NQM1: The number of local columns in A( INDEX+1:N, INDEX:N )
* LTNM0: The number of local rows & columns in
* tril( A( INDEX:N, INDEX:N ) )
* LTNM1: The number of local rows & columns in
* tril( A( INDEX+1:N, INDEX+1:N ) )
* NOTE: LTNM0 == LTNM1 on all processors except the diagonal
* processors, i.e. those where MYCOL == MYROW.
*
* Invariants:
* NP = NPM0 + LII - 1
* NQ = NQM0 + LIJ - 1
* NP = NPM1 + LIIP1 - 1
* NQ = NQM1 + LIJP1 - 1
* NP = LTLI + LTNM0 - 1
* NP = LTLIP1 + LTNM1 - 1
*
* Temporary variables. The following variables are used within
* a few lines after they are set and do hold state from one loop
* iteration to the next:
*
* The matrix A:
* The matrix A does not hold the same values that it would
* in an unblocked code nor the values that it would hold in
* in a blocked code.
*
* The value of A is confusing. It is easiest to state the
* difference between trueA and A at the point that MVR2 is called,
* so we will start there.
*
* Let trueA be the value that A would
* have at a given point in an unblocked code and A
* be the value that A has in this code at the same point.
*
* At the time of the call to MVR2,
* trueA = A + V' * H + H' * V
* where H = H( MAXINDEX:N, 1:BINDEX ) and
* V = V( MAXINDEX:N, 1:BINDEX ).
*
* At the bottom of the inner loop,
* trueA = A + V' * H + H' * V + v' * h + h' * v
* where H = H( MAXINDEX:N, 1:BINDEX ) and
* V = V( MAXINDEX:N, 1:BINDEX ) and
* v = V( liip1:N, BINDEX+1 ) and
* h = H( liip1:N, BINDEX+1 )
*
* At the top of the loop, BINDEX gets incremented, hence:
* trueA = A + V' * H + H' * V + v' * h + h' * v
* where H = H( MAXINDEX:N, 1:BINDEX-1 ) and
* V = V( MAXINDEX:N, 1:BINDEX-1 ) and
* v = V( liip1:N, BINDEX ) and
* h = H( liip1:N, BINDEX )
*
*
* A gets updated at the bottom of the outer loop
* After this update, trueA = A + v' * h + h' * v
* where v = V( liip1:N, BINDEX ) and
* h = H( liip1:N, BINDEX ) and BINDEX = 0
* Indeed, the previous loop invariant as stated above for the
* top of the loop still holds, but with BINDEX = 0, H and V
* are null matrices.
*
* After the current column of A is updated,
* trueA( INDEX, INDEX:N ) = A( INDEX, INDEX:N )
* the rest of A is untouched.
*
* After the current block column of A is updated,
* trueA = A + V' * H + H' * V
* where H = H( MAXINDEX:N, 1:BINDEX ) and
* V = V( MAXINDEX:N, 1:BINDEX )
*
* This brings us back to the point at which mvr2 is called.
*
*
* Details of the parallelization:
*
* We delay spreading v across to all processor columns (which
* would naturally happen at the bottom of the loop) in order to
* combine the spread of v( : , i-1 ) with the spread of h( : , i )
*
* In order to compute h( :, i ), we must update A( :, i )
* which means that the processor column owning A( :, i ) must
* have: c, tau, v( i, i ) and h( i, i ).
*
* The traditional
* way of computing v (and the one used in pzlatrd.f and
* zlatrd.f) is:
* v = tau * v
* c = v' * h
* alpha = - tau * c / 2
* v = v + alpha * h
* However, the traditional way of computing v requires that tau
* be broadcast to all processors in the current column (to compute
* v = tau * v) and then a sum-to-all is required (to
* compute v' * h ). We use the following formula instead:
* c = v' * h
* v = tau * ( v - c * tau' * h / 2 )
* The above formula allows tau to be spread down in the
* same call to DGSUM2D which performs the sum-to-all of c.
*
* The computation of v, which could be performed in any processor
* column (or other procesor subsets), is performed in the
* processor column that owns A( :, i+1 ) so that A( :, i+1 )
* can be updated prior to spreading v across.
*
* We keep the block column of A up-to-date to minimize the
* work required in updating the current column of A. Updating
* the block column of A is reasonably load balanced whereas
* updating the current column of A is not (only the current
* processor column is involved).
*
* In the following overview of the steps performed, M in the
* margin indicates message traffic and C indicates O(n^2 nb/sqrt(p))
* or more flops per processor.
*
* Inner loop:
* A( index:n, index ) -= ( v * ht(bindex) + h * vt( bindex) )
*M h = house( A(index:n, index) )
*M Spread v, h across
*M vt = v^T; ht = h^T
* A( index+1:n, index+1:maxindex ) -=
* ( v * ht(index+1:maxindex) + h *vt(index+1:maxindex) )
*C v = tril(A) * h; vt = ht * tril(A,-1)
*MorC v = v - H*V*h - V*H*h
*M v = v + vt^T
*M c = v' * h
* v = tau * ( v - c * tau' * h / 2 )
*C A = A - H*V - V*H
*
*
*
* =================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION Z_ONE, Z_NEGONE, Z_ZERO
PARAMETER ( Z_ONE = 1.0D0, Z_NEGONE = -1.0D0,
$ Z_ZERO = 0.0D0 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
*
*
* .. Local Scalars ..
*
*
LOGICAL BALANCED, INTERLEAVE, TWOGEMMS, UPPER
INTEGER ANB, BINDEX, CURCOL, CURROW, I, ICTXT, INDEX,
$ INDEXA, INDEXINH, INDEXINV, INH, INHB, INHT,
$ INHTB, INTMP, INV, INVB, INVT, INVTB, J, LDA,
$ LDV, LDZG, LII, LIIB, LIIP1, LIJ, LIJB, LIJP1,
$ LTLIP1, LTNM1, LWMIN, MAXINDEX, MININDEX,
$ MYCOL, MYFIRSTROW, MYROW, MYSETNUM, NBZG, NP,
$ NPB, NPCOL, NPM0, NPM1, NPROW, NPS, NPSET, NQ,
$ NQB, NQM1, NUMROWS, NXTCOL, NXTROW, PBMAX,
$ PBMIN, PBSIZE, PNB, ROWSPERPROC
DOUBLE PRECISION ALPHA, BETA, C, CONJTOPH, CONJTOPV, NORM,
$ ONEOVERBETA, SAFMAX, SAFMIN, TOPH, TOPNV,
$ TOPTAU, TOPV
* ..
* .. Local Arrays ..
*
*
*
*
INTEGER IDUM1( 1 ), IDUM2( 1 )
DOUBLE PRECISION CC( 3 ), DTMP( 5 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DCOMBNRM2, DGEBR2D,
$ DGEBS2D, DGEMM, DGEMV, DGERV2D, DGESD2D,
$ DGSUM2D, DLAMOV, DSCAL, DTRMVT, PCHK1MAT,
$ PDTREECOMB, PXERBLA
* ..
* .. External Functions ..
*
LOGICAL LSAME
INTEGER ICEIL, NUMROC, PJLAENV
DOUBLE PRECISION DNRM2, PDLAMCH
EXTERNAL LSAME, ICEIL, NUMROC, PJLAENV, DNRM2, PDLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, ICHAR, MAX, MIN, MOD, SIGN, SQRT
* ..
*
*
* .. Executable Statements ..
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
*
*
* Further details
* ===============
*
* At the top of the loop, v and nh have been computed but not
* spread across. Hence, A is out-of-date even after the
* rank 2k update. Furthermore, we compute the next v before
* nh is spread across.
*
* I claim that if we used a sum-to-all on NV, by summing CC within
* each column, that we could compute NV locally and could avoid
* spreading V across. Bruce claims that sum-to-all can be made
* to cost no more than sum-to-one on the Paragon. If that is
* true, this would be a win. But,
* the BLACS sum-to-all is just a sum-to-one followed by a broadcast,
* and hence the present scheme is better for now.
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
SAFMAX = SQRT( PDLAMCH( ICTXT, 'O' ) ) / N
SAFMIN = SQRT( PDLAMCH( ICTXT, 'S' ) )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 600+CTXT_ )
ELSE
*
* Here we set execution options for PDSYTTRD
*
PNB = PJLAENV( ICTXT, 2, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
ANB = PJLAENV( ICTXT, 3, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
*
INTERLEAVE = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 1, 0, 0,
$ 0 ).EQ.1 )
TWOGEMMS = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 2, 0, 0,
$ 0 ).EQ.1 )
BALANCED = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 3, 0, 0,
$ 0 ).EQ.1 )
*
CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
*
*
UPPER = LSAME( UPLO, 'U' )
IF( INFO.EQ.0 .AND. DESCA( NB_ ).NE.1 )
$ INFO = 600 + NB_
IF( INFO.EQ.0 ) THEN
*
*
* Here is the arithmetic:
* Let maxnpq = max( np, nq, 2 * ANB )
* LDV = 4 * max( np, nq ) + 2
* LWMIN = 2 * ( ANB + 1 ) * LDV + MAX( np, 2 * ANB )
* = 2 * ( ANB + 1 ) * ( 4 * NPS + 2 ) + NPS
*
* This overestimates memory requirements when ANB > NP/2
* Memory requirements are lower when interleave = .false.
* Hence, we could have two sets of memory requirements,
* one for interleave and one for
*
*
NPS = MAX( NUMROC( N, 1, 0, 0, NPROW ), 2*ANB )
LWMIN = 2*( ANB+1 )*( 4*NPS+2 ) + NPS
*
WORK( 1 ) = DBLE( LWMIN )
IF( .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( IA.NE.1 ) THEN
INFO = -4
ELSE IF( JA.NE.1 ) THEN
INFO = -5
ELSE IF( NPROW.NE.NPCOL ) THEN
INFO = -( 600+CTXT_ )
ELSE IF( DESCA( DTYPE_ ).NE.1 ) THEN
INFO = -( 600+DTYPE_ )
ELSE IF( DESCA( MB_ ).NE.1 ) THEN
INFO = -( 600+MB_ )
ELSE IF( DESCA( NB_ ).NE.1 ) THEN
INFO = -( 600+NB_ )
ELSE IF( DESCA( RSRC_ ).NE.0 ) THEN
INFO = -( 600+RSRC_ )
ELSE IF( DESCA( CSRC_ ).NE.0 ) THEN
INFO = -( 600+CSRC_ )
ELSE IF( LWORK.LT.LWMIN ) THEN
INFO = -11
END IF
END IF
IF( UPPER ) THEN
IDUM1( 1 ) = ICHAR( 'U' )
ELSE
IDUM1( 1 ) = ICHAR( 'L' )
END IF
IDUM2( 1 ) = 1
*
CALL PCHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, 1, IDUM1, IDUM2,
$ INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDSYTTRD', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
*
*
* Reduce the lower triangle of sub( A )
NP = NUMROC( N, 1, MYROW, 0, NPROW )
NQ = NUMROC( N, 1, MYCOL, 0, NPCOL )
*
NXTROW = 0
NXTCOL = 0
*
LIIP1 = 1
LIJP1 = 1
NPM1 = NP
NQM1 = NQ
*
LDA = DESCA( LLD_ )
ICTXT = DESCA( CTXT_ )
*
*
*
* Miscellaneous details:
* Put tau, D and E in the right places
* Check signs
* Place all the arrays in WORK, control their placement
* in memory.
*
*
*
* Loop invariants
* A(LIIP1, LIJ) points to the first element of A(I+1,J)
* NPM1,NQM1 = the number of rows, cols in A( LII+1:N,LIJ+1:N )
* A(LII:N,LIJ:N) is one step out of date.
* proc( CURROW, CURCOL ) owns A(LII,LIJ)
* proc( NXTROW, CURCOL ) owns A(LIIP1,LIJ)
*
INH = 1
*
IF( INTERLEAVE ) THEN
*
* H and V are interleaved to minimize memory movement
* LDV has to be twice as large to accomodate interleaving.
* In addition, LDV is doubled again to allow v, h and
* toptau to be spreaad across and transposed in a
* single communication operation with minimum memory
* movement.
*
* We could reduce LDV back to 2*MAX(NPM1,NQM1)
* by increasing the memory movement required in
* the spread and transpose of v, h and toptau.
* However, since the non-interleaved path already
* provides a mear minimum memory requirement option,
* we did not provide this additional path.
*
LDV = 4*( MAX( NPM1, NQM1 ) ) + 2
*
INH = 1
*
INV = INH + LDV / 2
INVT = INH + ( ANB+1 )*LDV
*
INHT = INVT + LDV / 2
INTMP = INVT + LDV*( ANB+1 )
*
ELSE
LDV = MAX( NPM1, NQM1 )
*
INHT = INH + LDV*( ANB+1 )
INV = INHT + LDV*( ANB+1 )
*
* The code works without this +1, but only because of a
* coincidence. Without the +1, WORK(INVT) gets trashed, but
* WORK(INVT) is only used once and when it is used, it is
* multiplied by WORK( INH ) which is zero. Hence, the fact
* that WORK(INVT) is trashed has no effect.
*
INVT = INV + LDV*( ANB+1 ) + 1
INTMP = INVT + LDV*( 2*ANB )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDSYTTRD', -INFO )
WORK( 1 ) = DBLE( LWMIN )
RETURN
END IF
*
*
* The satisfies the loop invariant: trueA = A - V * HT - H * VT,
* (where V, H, VT and HT all have BINDEX+1 rows/columns)
* the first ANB times through the loop.
*
*
*
* Setting either ( InH and InHT ) or InV to Z_ZERO
* is adequate except in the face of NaNs.
*
*
DO 10 I = 1, NP
WORK( INH+I-1 ) = Z_ZERO
WORK( INV+I-1 ) = Z_ZERO
10 CONTINUE
DO 20 I = 1, NQ
WORK( INHT+I-1 ) = Z_ZERO
20 CONTINUE
*
*
*
TOPNV = Z_ZERO
*
LTLIP1 = LIJP1
LTNM1 = NPM1
IF( MYCOL.GT.MYROW ) THEN
LTLIP1 = LTLIP1 + 1
LTNM1 = LTNM1 - 1
END IF
*
*
DO 210 MININDEX = 1, N - 1, ANB
*
*
MAXINDEX = MIN( MININDEX+ANB-1, N )
LIJB = NUMROC( MAXINDEX, 1, MYCOL, 0, NPCOL ) + 1
LIIB = NUMROC( MAXINDEX, 1, MYROW, 0, NPROW ) + 1
*
NQB = NQ - LIJB + 1
NPB = NP - LIIB + 1
INHTB = INHT + LIJB - 1
INVTB = INVT + LIJB - 1
INHB = INH + LIIB - 1
INVB = INV + LIIB - 1
*
*
*
*
DO 160 INDEX = MININDEX, MIN( MAXINDEX, N-1 )
*
BINDEX = INDEX - MININDEX
*
CURROW = NXTROW
CURCOL = NXTCOL
*
NXTROW = MOD( CURROW+1, NPROW )
NXTCOL = MOD( CURCOL+1, NPCOL )
*
LII = LIIP1
LIJ = LIJP1
NPM0 = NPM1
*
IF( MYROW.EQ.CURROW ) THEN
NPM1 = NPM1 - 1
LIIP1 = LIIP1 + 1
END IF
IF( MYCOL.EQ.CURCOL ) THEN
NQM1 = NQM1 - 1
LIJP1 = LIJP1 + 1
LTLIP1 = LTLIP1 + 1
LTNM1 = LTNM1 - 1
END IF
*
*
*
*
* V = NV, VT = NVT, H = NH, HT = NHT
*
*
* Update the current column of A
*
*
IF( MYCOL.EQ.CURCOL ) THEN
*
INDEXA = LII + ( LIJ-1 )*LDA
INDEXINV = INV + LII - 1 + ( BINDEX-1 )*LDV
INDEXINH = INH + LII - 1 + ( BINDEX-1 )*LDV
CONJTOPH = WORK( INHT+LIJ-1+BINDEX*LDV )
CONJTOPV = TOPNV
*
IF( INDEX.GT.1 ) THEN
DO 30 I = 0, NPM0 - 1
* A( INDEXA+I ) = A( INDEXA+I )
A( INDEXA+I ) = A( INDEXA+I ) -
$ WORK( INDEXINV+LDV+I )*CONJTOPH -
$ WORK( INDEXINH+LDV+I )*CONJTOPV
30 CONTINUE
END IF
*
*
END IF
*
*
IF( MYCOL.EQ.CURCOL ) THEN
*
* Compute the householder vector
*
IF( MYROW.EQ.CURROW ) THEN
DTMP( 2 ) = A( LII+( LIJ-1 )*LDA )
ELSE
DTMP( 2 ) = ZERO
END IF
IF( MYROW.EQ.NXTROW ) THEN
DTMP( 3 ) = A( LIIP1+( LIJ-1 )*LDA )
DTMP( 4 ) = ZERO
ELSE
DTMP( 3 ) = ZERO
DTMP( 4 ) = ZERO
END IF
*
NORM = DNRM2( NPM1, A( LIIP1+( LIJ-1 )*LDA ), 1 )
DTMP( 1 ) = NORM
*
* IF DTMP(5) = 1.0, NORM is too large and might cause
* overflow, hence PDTREECOMB must be called. IF DTMP(5)
* is zero on output, DTMP(1) can be trusted.
*
DTMP( 5 ) = ZERO
IF( DTMP( 1 ).GE.SAFMAX .OR. DTMP( 1 ).LT.SAFMIN ) THEN
DTMP( 5 ) = ONE
DTMP( 1 ) = ZERO
END IF
*
DTMP( 1 ) = DTMP( 1 )*DTMP( 1 )
CALL DGSUM2D( ICTXT, 'C', ' ', 5, 1, DTMP, 5, -1,
$ CURCOL )
IF( DTMP( 5 ).EQ.ZERO ) THEN
DTMP( 1 ) = SQRT( DTMP( 1 ) )
ELSE
DTMP( 1 ) = NORM
CALL PDTREECOMB( ICTXT, 'C', 1, DTMP, -1, MYCOL,
$ DCOMBNRM2 )
END IF
*
NORM = DTMP( 1 )
*
D( LIJ ) = DTMP( 2 )
IF( MYROW.EQ.CURROW .AND. MYCOL.EQ.CURCOL ) THEN
A( LII+( LIJ-1 )*LDA ) = D( LIJ )
END IF
*
*
ALPHA = DTMP( 3 )
*
NORM = SIGN( NORM, ALPHA )
*
IF( NORM.EQ.ZERO ) THEN
TOPTAU = ZERO
ELSE
BETA = NORM + ALPHA
TOPTAU = BETA / NORM
ONEOVERBETA = 1.0D0 / BETA
*
CALL DSCAL( NPM1, ONEOVERBETA,
$ A( LIIP1+( LIJ-1 )*LDA ), 1 )
END IF
*
IF( MYROW.EQ.NXTROW ) THEN
A( LIIP1+( LIJ-1 )*LDA ) = Z_ONE
END IF
*
TAU( LIJ ) = TOPTAU
E( LIJ ) = -NORM
*
END IF
*
*
* Spread v, nh, toptau across
*
DO 40 I = 0, NPM1 - 1
WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+I ) = A( LIIP1+I+
$ ( LIJ-1 )*LDA )
40 CONTINUE
*
IF( MYCOL.EQ.CURCOL ) THEN
WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+NPM1 ) = TOPTAU
CALL DGEBS2D( ICTXT, 'R', ' ', NPM1+NPM1+1, 1,
$ WORK( INV+LIIP1-1+BINDEX*LDV ),
$ NPM1+NPM1+1 )
ELSE
CALL DGEBR2D( ICTXT, 'R', ' ', NPM1+NPM1+1, 1,
$ WORK( INV+LIIP1-1+BINDEX*LDV ),
$ NPM1+NPM1+1, MYROW, CURCOL )
TOPTAU = WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+NPM1 )
END IF
DO 50 I = 0, NPM1 - 1
WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+I ) = WORK( INV+LIIP1-
$ 1+BINDEX*LDV+NPM1+I )
50 CONTINUE
*
IF( INDEX.LT.N ) THEN
IF( MYROW.EQ.NXTROW .AND. MYCOL.EQ.CURCOL )
$ A( LIIP1+( LIJ-1 )*LDA ) = E( LIJ )
END IF
*
* Transpose v, nh
*
*
IF( MYROW.EQ.MYCOL ) THEN
DO 60 I = 0, NPM1 + NPM1
WORK( INVT+LIJP1-1+BINDEX*LDV+I ) = WORK( INV+LIIP1-1+
$ BINDEX*LDV+I )
60 CONTINUE
ELSE
CALL DGESD2D( ICTXT, NPM1+NPM1, 1,
$ WORK( INV+LIIP1-1+BINDEX*LDV ), NPM1+NPM1,
$ MYCOL, MYROW )
CALL DGERV2D( ICTXT, NQM1+NQM1, 1,
$ WORK( INVT+LIJP1-1+BINDEX*LDV ), NQM1+NQM1,
$ MYCOL, MYROW )
END IF
*
DO 70 I = 0, NQM1 - 1
WORK( INHT+LIJP1-1+( BINDEX+1 )*LDV+I ) = WORK( INVT+
$ LIJP1-1+BINDEX*LDV+NQM1+I )
70 CONTINUE
*
*
* Update the current block column of A
*
IF( INDEX.GT.1 ) THEN
DO 90 J = LIJP1, LIJB - 1
DO 80 I = 0, NPM1 - 1
*
A( LIIP1+I+( J-1 )*LDA ) = A( LIIP1+I+( J-1 )*LDA )
$ - WORK( INV+LIIP1-1+BINDEX*LDV+I )*
$ WORK( INHT+J-1+BINDEX*LDV ) -
$ WORK( INH+LIIP1-1+BINDEX*LDV+I )*
$ WORK( INVT+J-1+BINDEX*LDV )
80 CONTINUE
90 CONTINUE
END IF
*
*
*
* Compute NV = A * NHT; NVT = A * NH
*
* These two lines are necessary because these elements
* are not always involved in the calls to DTRMVT
* for two reasons:
* 1) On diagonal processors, the call to TRMVT
* involves only LTNM1-1 elements
* 2) On some processes, NQM1 < LTM1 or LIIP1 < LTLIP1
* and when the results are combined across all processes,
* uninitialized values may be included.
WORK( INV+LIIP1-1+( BINDEX+1 )*LDV ) = Z_ZERO
WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV+NQM1-1 ) = Z_ZERO
*
*
IF( MYROW.EQ.MYCOL ) THEN
IF( LTNM1.GT.1 ) THEN
CALL DTRMVT( 'L', LTNM1-1,
$ A( LTLIP1+1+( LIJP1-1 )*LDA ), LDA,
$ WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV ), 1,
$ WORK( INH+LTLIP1+1-1+( BINDEX+1 )*LDV ),
$ 1, WORK( INV+LTLIP1+1-1+( BINDEX+1 )*
$ LDV ), 1, WORK( INHT+LIJP1-1+( BINDEX+
$ 1 )*LDV ), 1 )
END IF
DO 100 I = 1, LTNM1
WORK( INVT+LIJP1+I-1-1+( BINDEX+1 )*LDV )
$ = WORK( INVT+LIJP1+I-1-1+( BINDEX+1 )*LDV ) +
$ A( LTLIP1+I-1+( LIJP1+I-1-1 )*LDA )*
$ WORK( INH+LTLIP1+I-1-1+( BINDEX+1 )*LDV )
100 CONTINUE
ELSE
IF( LTNM1.GT.0 )
$ CALL DTRMVT( 'L', LTNM1, A( LTLIP1+( LIJP1-1 )*LDA ),
$ LDA, WORK( INVT+LIJP1-1+( BINDEX+1 )*
$ LDV ), 1, WORK( INH+LTLIP1-1+( BINDEX+
$ 1 )*LDV ), 1, WORK( INV+LTLIP1-1+
$ ( BINDEX+1 )*LDV ), 1,
$ WORK( INHT+LIJP1-1+( BINDEX+1 )*LDV ),
$ 1 )
*
END IF
*
*
* We take advantage of the fact that:
* A * sum( B ) = sum ( A * B ) for matrices A,B
*
* trueA = A + V * HT + H * VT
* hence: (trueA)v = Av' + V * HT * v + H * VT * v
* VT * v = sum_p_in_NPROW ( VTp * v )
* H * VT * v = H * sum (VTp * v) = sum ( H * VTp * v )
*
* v = v + V * HT * h + H * VT * h
*
*
*
* tmp = HT * nh1
DO 110 I = 1, 2*( BINDEX+1 )
WORK( INTMP-1+I ) = 0
110 CONTINUE
*
IF( BALANCED ) THEN
NPSET = NPROW
MYSETNUM = MYROW
ROWSPERPROC = ICEIL( NQB, NPSET )
MYFIRSTROW = MIN( NQB+1, 1+ROWSPERPROC*MYSETNUM )
NUMROWS = MIN( ROWSPERPROC, NQB-MYFIRSTROW+1 )
*
*
* tmp = HT * v
*
CALL DGEMV( 'C', NUMROWS, BINDEX+1, Z_ONE,
$ WORK( INHTB+MYFIRSTROW-1 ), LDV,
$ WORK( INHTB+MYFIRSTROW-1+( BINDEX+1 )*LDV ),
$ 1, Z_ZERO, WORK( INTMP ), 1 )
* tmp2 = VT * v
CALL DGEMV( 'C', NUMROWS, BINDEX+1, Z_ONE,
$ WORK( INVTB+MYFIRSTROW-1 ), LDV,
$ WORK( INHTB+MYFIRSTROW-1+( BINDEX+1 )*LDV ),
$ 1, Z_ZERO, WORK( INTMP+BINDEX+1 ), 1 )
*
*
CALL DGSUM2D( ICTXT, 'C', ' ', 2*( BINDEX+1 ), 1,
$ WORK( INTMP ), 2*( BINDEX+1 ), -1, -1 )
ELSE
* tmp = HT * v
*
CALL DGEMV( 'C', NQB, BINDEX+1, Z_ONE, WORK( INHTB ),
$ LDV, WORK( INHTB+( BINDEX+1 )*LDV ), 1,
$ Z_ZERO, WORK( INTMP ), 1 )
* tmp2 = VT * v
CALL DGEMV( 'C', NQB, BINDEX+1, Z_ONE, WORK( INVTB ),
$ LDV, WORK( INHTB+( BINDEX+1 )*LDV ), 1,
$ Z_ZERO, WORK( INTMP+BINDEX+1 ), 1 )
*
END IF
*
*
*
IF( BALANCED ) THEN
MYSETNUM = MYCOL
*
ROWSPERPROC = ICEIL( NPB, NPSET )
MYFIRSTROW = MIN( NPB+1, 1+ROWSPERPROC*MYSETNUM )
NUMROWS = MIN( ROWSPERPROC, NPB-MYFIRSTROW+1 )
*
CALL DGSUM2D( ICTXT, 'R', ' ', 2*( BINDEX+1 ), 1,
$ WORK( INTMP ), 2*( BINDEX+1 ), -1, -1 )
*
*
* v = v + V * tmp
IF( INDEX.GT.1. ) THEN
CALL DGEMV( 'N', NUMROWS, BINDEX+1, Z_NEGONE,
$ WORK( INVB+MYFIRSTROW-1 ), LDV,
$ WORK( INTMP ), 1, Z_ONE,
$ WORK( INVB+MYFIRSTROW-1+( BINDEX+1 )*
$ LDV ), 1 )
*
* v = v + H * tmp2
CALL DGEMV( 'N', NUMROWS, BINDEX+1, Z_NEGONE,
$ WORK( INHB+MYFIRSTROW-1 ), LDV,
$ WORK( INTMP+BINDEX+1 ), 1, Z_ONE,
$ WORK( INVB+MYFIRSTROW-1+( BINDEX+1 )*
$ LDV ), 1 )
END IF
*
ELSE
* v = v + V * tmp
CALL DGEMV( 'N', NPB, BINDEX+1, Z_NEGONE, WORK( INVB ),
$ LDV, WORK( INTMP ), 1, Z_ONE,
$ WORK( INVB+( BINDEX+1 )*LDV ), 1 )
*
*
* v = v + H * tmp2
CALL DGEMV( 'N', NPB, BINDEX+1, Z_NEGONE, WORK( INHB ),
$ LDV, WORK( INTMP+BINDEX+1 ), 1, Z_ONE,
$ WORK( INVB+( BINDEX+1 )*LDV ), 1 )
*
END IF
*
*
* Transpose NV and add it back into NVT
*
IF( MYROW.EQ.MYCOL ) THEN
DO 120 I = 0, NQM1 - 1
WORK( INTMP+I ) = WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV+
$ I )
120 CONTINUE
ELSE
CALL DGESD2D( ICTXT, NQM1, 1,
$ WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV ),
$ NQM1, MYCOL, MYROW )
CALL DGERV2D( ICTXT, NPM1, 1, WORK( INTMP ), NPM1, MYCOL,
$ MYROW )
*
END IF
DO 130 I = 0, NPM1 - 1
WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I ) = WORK( INV+LIIP1-
$ 1+( BINDEX+1 )*LDV+I ) + WORK( INTMP+I )
130 CONTINUE
*
* Sum-to-one NV rowwise (within a row)
*
CALL DGSUM2D( ICTXT, 'R', ' ', NPM1, 1,
$ WORK( INV+LIIP1-1+( BINDEX+1 )*LDV ), NPM1,
$ MYROW, NXTCOL )
*
*
* Dot product c = NV * NH
* Sum-to-all c within next processor column
*
*
IF( MYCOL.EQ.NXTCOL ) THEN
CC( 1 ) = Z_ZERO
DO 140 I = 0, NPM1 - 1
CC( 1 ) = CC( 1 ) + WORK( INV+LIIP1-1+( BINDEX+1 )*
$ LDV+I )*WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+
$ I )
140 CONTINUE
IF( MYROW.EQ.NXTROW ) THEN
CC( 2 ) = WORK( INV+LIIP1-1+( BINDEX+1 )*LDV )
CC( 3 ) = WORK( INH+LIIP1-1+( BINDEX+1 )*LDV )
ELSE
CC( 2 ) = Z_ZERO
CC( 3 ) = Z_ZERO
END IF
CALL DGSUM2D( ICTXT, 'C', ' ', 3, 1, CC, 3, -1, NXTCOL )
*
TOPV = CC( 2 )
C = CC( 1 )
TOPH = CC( 3 )
*
TOPNV = TOPTAU*( TOPV-C*TOPTAU / 2*TOPH )
*
*
* Compute V = Tau * (V - C * Tau' / 2 * H )
*
*
DO 150 I = 0, NPM1 - 1
WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I ) = TOPTAU*
$ ( WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I )-C*TOPTAU /
$ 2*WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+I ) )
150 CONTINUE
*
END IF
*
*
160 CONTINUE
*
*
* Perform the rank2k update
*
IF( MAXINDEX.LT.N ) THEN
*
DO 170 I = 0, NPM1 - 1
WORK( INTMP+I ) = WORK( INH+LIIP1-1+ANB*LDV+I )
170 CONTINUE
*
*
*
IF( .NOT.TWOGEMMS ) THEN
IF( INTERLEAVE ) THEN
LDZG = LDV / 2
ELSE
CALL DLAMOV( 'A', LTNM1, ANB, WORK( INHT+LIJP1-1 ),
$ LDV, WORK( INVT+LIJP1-1+ANB*LDV ), LDV )
*
CALL DLAMOV( 'A', LTNM1, ANB, WORK( INV+LTLIP1-1 ),
$ LDV, WORK( INH+LTLIP1-1+ANB*LDV ), LDV )
LDZG = LDV
END IF
NBZG = ANB*2
ELSE
LDZG = LDV
NBZG = ANB
END IF
*
*
DO 180 PBMIN = 1, LTNM1, PNB
*
PBSIZE = MIN( PNB, LTNM1-PBMIN+1 )
PBMAX = MIN( LTNM1, PBMIN+PNB-1 )
CALL DGEMM( 'N', 'C', PBSIZE, PBMAX, NBZG, Z_NEGONE,
$ WORK( INH+LTLIP1-1+PBMIN-1 ), LDZG,
$ WORK( INVT+LIJP1-1 ), LDZG, Z_ONE,
$ A( LTLIP1+PBMIN-1+( LIJP1-1 )*LDA ), LDA )
IF( TWOGEMMS ) THEN
CALL DGEMM( 'N', 'C', PBSIZE, PBMAX, ANB, Z_NEGONE,
$ WORK( INV+LTLIP1-1+PBMIN-1 ), LDZG,
$ WORK( INHT+LIJP1-1 ), LDZG, Z_ONE,
$ A( LTLIP1+PBMIN-1+( LIJP1-1 )*LDA ), LDA )
END IF
180 CONTINUE
*
*
*
DO 190 I = 0, NPM1 - 1
WORK( INV+LIIP1-1+I ) = WORK( INV+LIIP1-1+ANB*LDV+I )
WORK( INH+LIIP1-1+I ) = WORK( INTMP+I )
190 CONTINUE
DO 200 I = 0, NQM1 - 1
WORK( INHT+LIJP1-1+I ) = WORK( INHT+LIJP1-1+ANB*LDV+I )
200 CONTINUE
*
*
END IF
*
* End of the update A code
*
210 CONTINUE
*
IF( MYCOL.EQ.NXTCOL ) THEN
IF( MYROW.EQ.NXTROW ) THEN
*
D( NQ ) = A( NP+( NQ-1 )*LDA )
*
CALL DGEBS2D( ICTXT, 'C', ' ', 1, 1, D( NQ ), 1 )
ELSE
CALL DGEBR2D( ICTXT, 'C', ' ', 1, 1, D( NQ ), 1, NXTROW,
$ NXTCOL )
END IF
END IF
*
*
*
*
WORK( 1 ) = DBLE( LWMIN )
RETURN
*
* End of PDSYTTRD
*
*
END
|