File: pdtrtrs.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (333 lines) | stat: -rw-r--r-- 13,035 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
      SUBROUTINE PDTRTRS( UPLO, TRANS, DIAG, N, NRHS, A, IA, JA, DESCA,
     $                    B, IB, JB, DESCB, INFO )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            IA, IB, INFO, JA, JB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * )
      DOUBLE PRECISION   A( * ), B( * )
*     ..
*
*  Purpose
*  =======
*
*  PDTRTRS solves a triangular system of the form
*
*     sub( A ) * X = sub( B )  or  sub( A )**T * X = sub( B ),
*
*  where sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1) and is a triangular
*  distributed matrix of order N, and B(IB:IB+N-1,JB:JB+NRHS-1) is an
*  N-by-NRHS distributed matrix denoted by sub( B ). A check is made
*  to verify that sub( A ) is nonsingular.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER
*          = 'U':  sub( A ) is upper triangular;
*          = 'L':  sub( A ) is lower triangular.
*
*  TRANS   (global input) CHARACTER
*          Specifies the form of the system of equations:
*          = 'N': Solve sub( A )    * X = sub( B ) (No transpose)
*          = 'T': Solve sub( A )**T * X = sub( B ) (Transpose)
*          = 'C': Solve sub( A )**T * X = sub( B ) (Transpose)
*
*  DIAG    (global input) CHARACTER
*          = 'N':  sub( A ) is non-unit triangular;
*          = 'U':  sub( A ) is unit triangular.
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on i.e the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed matrix sub( B ). NRHS >= 0.
*
*  A       (local input) DOUBLE PRECISION pointer into the local memory
*          to an array of dimension (LLD_A,LOCc(JA+N-1) ). This array
*          contains the local pieces of the distributed triangular
*          matrix sub( A ).  If UPLO = 'U', the leading N-by-N upper
*          triangular part of sub( A ) contains the upper triangular
*          matrix, and the strictly lower triangular part of sub( A )
*          is not referenced.  If UPLO = 'L', the leading N-by-N lower
*          triangular part of sub( A ) contains the lower triangular
*          matrix, and the strictly upper triangular part of sub( A )
*          is not referenced.  If DIAG = 'U', the diagonal elements of
*          sub( A ) are also not referenced and are assumed to be 1.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  B       (local input/local output) DOUBLE PRECISION pointer into the
*          local memory to an array of dimension
*          (LLD_B,LOCc(JB+NRHS-1)).  On entry, this array contains the
*          local pieces of the right hand side distributed matrix
*          sub( B ). On exit, if INFO = 0, sub( B ) is overwritten by
*          the solution matrix X.
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = i, the i-th diagonal element of sub( A ) is
*                zero, indicating that the submatrix is singular and the
*                solutions X have not been computed.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      INTEGER            I, IAROW, IBROW, ICOFFA, ICTXT, ICURCOL,
     $                   ICURROW, IROFFA, IROFFB, IDUM, II, IOFFA, J,
     $                   JBLK, JJ, JN, LDA, LL, MYCOL, MYROW, NPCOL,
     $                   NPROW
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 3 ), IDUM2( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, IGAMX2D, INFOG2L,
     $                   PCHK2MAT, PDTRSM, PXERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, INDXG2P
      EXTERNAL           ICEIL, INDXG2P, LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -907
      ELSE
         UPPER = LSAME( UPLO, 'U' )
         NOUNIT = LSAME( DIAG, 'N' )
         NOTRAN = LSAME( TRANS, 'N' )
*
         CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 9, INFO )
         CALL CHK1MAT( N, 4, NRHS, 5, IB, JB, DESCB, 13, INFO )
         IF( INFO.EQ.0 ) THEN
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IROFFB = MOD( IB-1, DESCB( MB_ ) )
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $                       NPROW )
            IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -1
            ELSE IF( .NOT.NOTRAN .AND.  .NOT.LSAME( TRANS, 'T' ) .AND.
     $               .NOT.LSAME( TRANS, 'C' ) ) THEN
               INFO = -2
            ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
               INFO = -3
            ELSE IF( IROFFA.NE.ICOFFA .OR. IROFFA.NE.0 ) THEN
               INFO = -8
            ELSE IF( IROFFA.NE.IROFFB .OR. IAROW.NE.IBROW ) THEN
               INFO = -11
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -904
            ELSE IF( DESCB( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -1304
            END IF
         END IF
*
         IF( UPPER ) THEN
            IDUM1( 1 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'L' )
         END IF
         IDUM2( 1 ) = 1
         IF( NOTRAN ) THEN
            IDUM1( 2 ) = ICHAR( 'N' )
         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
            IDUM1( 2 ) = ICHAR( 'T' )
         ELSE IF( LSAME( TRANS, 'C' ) ) THEN
            IDUM1( 2 ) = ICHAR( 'C' )
         END IF
         IDUM2( 2 ) = 2
         IF( NOUNIT ) THEN
            IDUM1( 3 ) = ICHAR( 'N' )
         ELSE
            IDUM1( 3 ) = ICHAR( 'D' )
         END IF
         IDUM2( 3 ) = 3
         CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 9, N, 4, NRHS, 5,
     $                  IB, JB, DESCB, 13, 3, IDUM1, IDUM2, INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDTRTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     Check for singularity if non-unit.
*
      IF( NOUNIT ) THEN
          CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                  II, JJ, ICURROW, ICURCOL )
          JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
          LDA = DESCA( LLD_ )
          IOFFA = II + ( JJ - 1 ) * LDA
*
*         Handle first block separately
*
          JBLK = JN-JA+1
          IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
             LL = IOFFA
             DO 10 I = 0, JBLK-1
                IF( A( LL ).EQ.ZERO .AND. INFO.EQ.0 )
     $             INFO = I + 1
                LL = IOFFA + LDA + 1
   10        CONTINUE
          END IF
          IF( MYROW.EQ.ICURROW )
     $       IOFFA = IOFFA + JBLK
          IF( MYCOL.EQ.ICURCOL )
     $       IOFFA = IOFFA + JBLK*LDA
          ICURROW = MOD( ICURROW+1, NPROW )
          ICURCOL = MOD( ICURCOL+1, NPCOL )
*
*         Loop over remaining blocks of columns
*
          DO 30 J = JN+1, JA+N-1, DESCA( NB_ )
             JBLK = MIN( JA+N-J, DESCA( NB_ ) )
             IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
                LL = IOFFA
                DO 20 I = 0, JBLK-1
                   IF( A( LL ).EQ.ZERO .AND. INFO.EQ.0 )
     $                INFO = J + I - JA + 1
                   LL = IOFFA + LDA + 1
   20           CONTINUE
             END IF
             IF( MYROW.EQ.ICURROW )
     $          IOFFA = IOFFA + JBLK
             IF( MYCOL.EQ.ICURCOL )
     $          IOFFA = IOFFA + JBLK*LDA
             ICURROW = MOD( ICURROW+1, NPROW )
             ICURCOL = MOD( ICURCOL+1, NPCOL )
   30     CONTINUE
          CALL IGAMX2D( ICTXT, 'All', ' ', 1, 1, INFO, 1, IDUM, IDUM,
     $                  -1, -1, MYCOL )
          IF( INFO.NE.0 )
     $       RETURN
      END IF
*
*     Solve A * x = b  or  A' * x = b.
*
      CALL PDTRSM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, IA, JA,
     $             DESCA, B, IB, JB, DESCB )
*
      RETURN
*
*     End of PDTRTRS
*
      END