1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
SUBROUTINE PDTRTRS( UPLO, TRANS, DIAG, N, NRHS, A, IA, JA, DESCA,
$ B, IB, JB, DESCB, INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER IA, IB, INFO, JA, JB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCB( * )
DOUBLE PRECISION A( * ), B( * )
* ..
*
* Purpose
* =======
*
* PDTRTRS solves a triangular system of the form
*
* sub( A ) * X = sub( B ) or sub( A )**T * X = sub( B ),
*
* where sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1) and is a triangular
* distributed matrix of order N, and B(IB:IB+N-1,JB:JB+NRHS-1) is an
* N-by-NRHS distributed matrix denoted by sub( B ). A check is made
* to verify that sub( A ) is nonsingular.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* = 'U': sub( A ) is upper triangular;
* = 'L': sub( A ) is lower triangular.
*
* TRANS (global input) CHARACTER
* Specifies the form of the system of equations:
* = 'N': Solve sub( A ) * X = sub( B ) (No transpose)
* = 'T': Solve sub( A )**T * X = sub( B ) (Transpose)
* = 'C': Solve sub( A )**T * X = sub( B ) (Transpose)
*
* DIAG (global input) CHARACTER
* = 'N': sub( A ) is non-unit triangular;
* = 'U': sub( A ) is unit triangular.
*
* N (global input) INTEGER
* The number of rows and columns to be operated on i.e the
* order of the distributed submatrix sub( A ). N >= 0.
*
* NRHS (global input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the distributed matrix sub( B ). NRHS >= 0.
*
* A (local input) DOUBLE PRECISION pointer into the local memory
* to an array of dimension (LLD_A,LOCc(JA+N-1) ). This array
* contains the local pieces of the distributed triangular
* matrix sub( A ). If UPLO = 'U', the leading N-by-N upper
* triangular part of sub( A ) contains the upper triangular
* matrix, and the strictly lower triangular part of sub( A )
* is not referenced. If UPLO = 'L', the leading N-by-N lower
* triangular part of sub( A ) contains the lower triangular
* matrix, and the strictly upper triangular part of sub( A )
* is not referenced. If DIAG = 'U', the diagonal elements of
* sub( A ) are also not referenced and are assumed to be 1.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* B (local input/local output) DOUBLE PRECISION pointer into the
* local memory to an array of dimension
* (LLD_B,LOCc(JB+NRHS-1)). On entry, this array contains the
* local pieces of the right hand side distributed matrix
* sub( B ). On exit, if INFO = 0, sub( B ) is overwritten by
* the solution matrix X.
*
* IB (global input) INTEGER
* The row index in the global array B indicating the first
* row of sub( B ).
*
* JB (global input) INTEGER
* The column index in the global array B indicating the
* first column of sub( B ).
*
* DESCB (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix B.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: If INFO = i, the i-th diagonal element of sub( A ) is
* zero, indicating that the submatrix is singular and the
* solutions X have not been computed.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER I, IAROW, IBROW, ICOFFA, ICTXT, ICURCOL,
$ ICURROW, IROFFA, IROFFB, IDUM, II, IOFFA, J,
$ JBLK, JJ, JN, LDA, LL, MYCOL, MYROW, NPCOL,
$ NPROW
* ..
* .. Local Arrays ..
INTEGER IDUM1( 3 ), IDUM2( 3 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, IGAMX2D, INFOG2L,
$ PCHK2MAT, PDTRSM, PXERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, INDXG2P
EXTERNAL ICEIL, INDXG2P, LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC ICHAR, MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -907
ELSE
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
NOTRAN = LSAME( TRANS, 'N' )
*
CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 9, INFO )
CALL CHK1MAT( N, 4, NRHS, 5, IB, JB, DESCB, 13, INFO )
IF( INFO.EQ.0 ) THEN
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
IROFFB = MOD( IB-1, DESCB( MB_ ) )
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
$ NPROW )
IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
$ NPROW )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND.
$ .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( IROFFA.NE.ICOFFA .OR. IROFFA.NE.0 ) THEN
INFO = -8
ELSE IF( IROFFA.NE.IROFFB .OR. IAROW.NE.IBROW ) THEN
INFO = -11
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -904
ELSE IF( DESCB( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -1304
END IF
END IF
*
IF( UPPER ) THEN
IDUM1( 1 ) = ICHAR( 'U' )
ELSE
IDUM1( 1 ) = ICHAR( 'L' )
END IF
IDUM2( 1 ) = 1
IF( NOTRAN ) THEN
IDUM1( 2 ) = ICHAR( 'N' )
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
IDUM1( 2 ) = ICHAR( 'T' )
ELSE IF( LSAME( TRANS, 'C' ) ) THEN
IDUM1( 2 ) = ICHAR( 'C' )
END IF
IDUM2( 2 ) = 2
IF( NOUNIT ) THEN
IDUM1( 3 ) = ICHAR( 'N' )
ELSE
IDUM1( 3 ) = ICHAR( 'D' )
END IF
IDUM2( 3 ) = 3
CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 9, N, 4, NRHS, 5,
$ IB, JB, DESCB, 13, 3, IDUM1, IDUM2, INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PDTRTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* Check for singularity if non-unit.
*
IF( NOUNIT ) THEN
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ II, JJ, ICURROW, ICURCOL )
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
LDA = DESCA( LLD_ )
IOFFA = II + ( JJ - 1 ) * LDA
*
* Handle first block separately
*
JBLK = JN-JA+1
IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
LL = IOFFA
DO 10 I = 0, JBLK-1
IF( A( LL ).EQ.ZERO .AND. INFO.EQ.0 )
$ INFO = I + 1
LL = IOFFA + LDA + 1
10 CONTINUE
END IF
IF( MYROW.EQ.ICURROW )
$ IOFFA = IOFFA + JBLK
IF( MYCOL.EQ.ICURCOL )
$ IOFFA = IOFFA + JBLK*LDA
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining blocks of columns
*
DO 30 J = JN+1, JA+N-1, DESCA( NB_ )
JBLK = MIN( JA+N-J, DESCA( NB_ ) )
IF( MYROW.EQ.ICURROW .AND. MYCOL.EQ.ICURCOL ) THEN
LL = IOFFA
DO 20 I = 0, JBLK-1
IF( A( LL ).EQ.ZERO .AND. INFO.EQ.0 )
$ INFO = J + I - JA + 1
LL = IOFFA + LDA + 1
20 CONTINUE
END IF
IF( MYROW.EQ.ICURROW )
$ IOFFA = IOFFA + JBLK
IF( MYCOL.EQ.ICURCOL )
$ IOFFA = IOFFA + JBLK*LDA
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
30 CONTINUE
CALL IGAMX2D( ICTXT, 'All', ' ', 1, 1, INFO, 1, IDUM, IDUM,
$ -1, -1, MYCOL )
IF( INFO.NE.0 )
$ RETURN
END IF
*
* Solve A * x = b or A' * x = b.
*
CALL PDTRSM( 'Left', UPLO, TRANS, DIAG, N, NRHS, ONE, A, IA, JA,
$ DESCA, B, IB, JB, DESCB )
*
RETURN
*
* End of PDTRTRS
*
END
|