1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
SUBROUTINE PSGEBRD( M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP,
$ WORK, LWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 25, 2001
*
* .. Scalar Arguments ..
INTEGER IA, INFO, JA, LWORK, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * ), D( * ), E( * ), TAUP( * ), TAUQ( * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* PSGEBRD reduces a real general M-by-N distributed matrix
* sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal
* form B by an orthogonal transformation: Q' * sub( A ) * P = B.
*
* If M >= N, B is upper bidiagonal; if M < N, B is lower bidiagonal.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* general distributed matrix sub( A ). On exit, if M >= N,
* the diagonal and the first superdiagonal of sub( A ) are
* overwritten with the upper bidiagonal matrix B; the elements
* below the diagonal, with the array TAUQ, represent the
* orthogonal matrix Q as a product of elementary reflectors,
* and the elements above the first superdiagonal, with the
* array TAUP, represent the orthogonal matrix P as a product
* of elementary reflectors. If M < N, the diagonal and the
* first subdiagonal are overwritten with the lower bidiagonal
* matrix B; the elements below the first subdiagonal, with the
* array TAUQ, represent the orthogonal matrix Q as a product of
* elementary reflectors, and the elements above the diagonal,
* with the array TAUP, represent the orthogonal matrix P as a
* product of elementary reflectors. See Further Details.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* D (local output) REAL array, dimension
* LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise.
* The distributed diagonal elements of the bidiagonal matrix
* B: D(i) = A(i,i). D is tied to the distributed matrix A.
*
* E (local output) REAL array, dimension
* LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
* The distributed off-diagonal elements of the bidiagonal
* distributed matrix B:
* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
* E is tied to the distributed matrix A.
*
* TAUQ (local output) REAL array dimension
* LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary
* reflectors which represent the orthogonal matrix Q. TAUQ
* is tied to the distributed matrix A. See Further Details.
*
* TAUP (local output) REAL array, dimension
* LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary
* reflectors which represent the orthogonal matrix P. TAUP
* is tied to the distributed matrix A. See Further Details.
*
* WORK (local workspace/local output) REAL array,
* dimension (LWORK)
* On exit, WORK( 1 ) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= NB*( MpA0 + NqA0 + 1 ) + NqA0
*
* where NB = MB_A = NB_A,
* IROFFA = MOD( IA-1, NB ), ICOFFA = MOD( JA-1, NB ),
* IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB, MYCOL, CSRC_A, NPCOL ),
* MpA0 = NUMROC( M+IROFFA, NB, MYROW, IAROW, NPROW ),
* NqA0 = NUMROC( N+ICOFFA, NB, MYCOL, IACOL, NPCOL ).
*
* INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Further Details
* ===============
*
* The matrices Q and P are represented as products of elementary
* reflectors:
*
* If m >= n,
*
* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
*
* Each H(i) and G(i) has the form:
*
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
*
* where tauq and taup are real scalars, and v and u are real vectors;
* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
* A(ia+i:ia+m-1,ja+i-1);
* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
* A(ia+i-1,ja+i+1:ja+n-1);
* tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
*
* If m < n,
*
* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
*
* Each H(i) and G(i) has the form:
*
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
*
* where tauq and taup are real scalars, and v and u are real vectors;
* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
* A(ia+i+1:ia+m-1,ja+i-1);
* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
* A(ia+i-1,ja+i:ja+n-1);
* tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
*
* The contents of sub( A ) on exit are illustrated by the following
* examples:
*
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
*
* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
* ( v1 v2 v3 v4 v5 )
*
* where d and e denote diagonal and off-diagonal elements of B, vi
* denotes an element of the vector defining H(i), and ui an element of
* the vector defining G(i).
*
* Alignment requirements
* ======================
*
* The distributed submatrix sub( A ) must verify some alignment proper-
* ties, namely the following expressions should be true:
* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA )
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
CHARACTER COLCTOP, ROWCTOP
INTEGER I, IACOL, IAROW, ICTXT, IINFO, IOFF, IPW, IPY,
$ IW, J, JB, JS, JW, K, L, LWMIN, MN, MP, MYCOL,
$ MYROW, NB, NPCOL, NPROW, NQ
* ..
* .. Local Arrays ..
INTEGER DESCWX( DLEN_ ), DESCWY( DLEN_ ), IDUM1( 1 ),
$ IDUM2( 1 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCSET, PCHK1MAT,
$ PSELSET, PSGEBD2, PSGEMM, PSLABRD,
$ PB_TOPGET, PB_TOPSET, PXERBLA
* ..
* .. External Functions ..
INTEGER INDXG2L, INDXG2P, NUMROC
EXTERNAL INDXG2L, INDXG2P, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD, REAL
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(600+CTXT_)
ELSE
CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
IF( INFO.EQ.0 ) THEN
NB = DESCA( MB_ )
IOFF = MOD( IA-1, DESCA( MB_ ) )
IAROW = INDXG2P( IA, NB, MYROW, DESCA( RSRC_ ), NPROW )
IACOL = INDXG2P( JA, NB, MYCOL, DESCA( CSRC_ ), NPCOL )
MP = NUMROC( M+IOFF, NB, MYROW, IAROW, NPROW )
NQ = NUMROC( N+IOFF, NB, MYCOL, IACOL, NPCOL )
LWMIN = NB*( MP+NQ+1 ) + NQ
*
WORK( 1 ) = REAL( LWMIN )
LQUERY = ( LWORK.EQ.-1 )
IF( IOFF.NE.MOD( JA-1, DESCA( NB_ ) ) ) THEN
INFO = -5
ELSE IF( NB.NE.DESCA( NB_ ) ) THEN
INFO = -(600+NB_)
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
IF( LQUERY ) THEN
IDUM1( 1 ) = -1
ELSE
IDUM1( 1 ) = 1
END IF
IDUM2( 1 ) = 12
CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, 1, IDUM1, IDUM2,
$ INFO )
END IF
*
IF( INFO.LT.0 ) THEN
CALL PXERBLA( ICTXT, 'PSGEBRD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
MN = MIN( M, N )
IF( MN.EQ.0 )
$ RETURN
*
* Initialize parameters.
*
CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', '1-tree' )
CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise', '1-tree' )
*
IPY = MP * NB + 1
IPW = NQ * NB + IPY
*
CALL DESCSET( DESCWX, M+IOFF, NB, NB, NB, IAROW, IACOL, ICTXT,
$ MAX( 1, MP ) )
CALL DESCSET( DESCWY, NB, N+IOFF, NB, NB, IAROW, IACOL, ICTXT,
$ NB )
*
MP = NUMROC( M+IA-1, NB, MYROW, DESCA( RSRC_ ), NPROW )
NQ = NUMROC( N+JA-1, NB, MYCOL, DESCA( CSRC_ ), NPCOL )
K = 1
JB = NB - IOFF
IW = IOFF + 1
JW = IOFF + 1
*
DO 10 L = 1, MN+IOFF-NB, NB
I = IA + K - 1
J = JA + K - 1
*
* Reduce rows and columns i:i+nb-1 to bidiagonal form and return
* the matrices X and Y which are needed to update the unreduced
* part of the matrix.
*
CALL PSLABRD( M-K+1, N-K+1, JB, A, I, J, DESCA, D, E, TAUQ,
$ TAUP, WORK, IW, JW, DESCWX, WORK( IPY ), IW,
$ JW, DESCWY, WORK( IPW ) )
*
* Update the trailing submatrix A(i+nb:ia+m-1,j+nb:ja+n-1), using
* an update of the form A := A - V*Y' - X*U'.
*
CALL PSGEMM( 'No transpose', 'No transpose', M-K-JB+1,
$ N-K-JB+1, JB, -ONE, A, I+JB, J, DESCA,
$ WORK( IPY ), IW, JW+JB, DESCWY, ONE, A, I+JB,
$ J+JB, DESCA )
CALL PSGEMM( 'No transpose', 'No transpose', M-K-JB+1,
$ N-K-JB+1, JB, -ONE, WORK, IW+JB, JW, DESCWX, A, I,
$ J+JB, DESCA, ONE, A, I+JB, J+JB, DESCA )
*
* Copy last off-diagonal elements of B back into sub( A ).
*
IF( M.GE.N ) THEN
JS = MIN( INDXG2L( I+JB-1, NB, 0, DESCA( RSRC_ ), NPROW ),
$ MP )
IF( JS.GT.0 )
$ CALL PSELSET( A, I+JB-1, J+JB, DESCA, E( JS ) )
ELSE
JS = MIN( INDXG2L( J+JB-1, NB, 0, DESCA( CSRC_ ), NPCOL ),
$ NQ )
IF( JS.GT.0 )
$ CALL PSELSET( A, I+JB, J+JB-1, DESCA, E( JS ) )
END IF
*
K = K + JB
JB = NB
IW = 1
JW = 1
DESCWX( M_ ) = DESCWX( M_ ) - JB
DESCWX( RSRC_ ) = MOD( DESCWX( RSRC_ ) + 1, NPROW )
DESCWX( CSRC_ ) = MOD( DESCWX( CSRC_ ) + 1, NPCOL )
DESCWY( N_ ) = DESCWY( N_ ) - JB
DESCWY( RSRC_ ) = MOD( DESCWY( RSRC_ ) + 1, NPROW )
DESCWY( CSRC_ ) = MOD( DESCWY( CSRC_ ) + 1, NPCOL )
*
10 CONTINUE
*
* Use unblocked code to reduce the remainder of the matrix.
*
CALL PSGEBD2( M-K+1, N-K+1, A, IA+K-1, JA+K-1, DESCA, D, E, TAUQ,
$ TAUP, WORK, LWORK, IINFO )
*
CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
*
WORK( 1 ) = REAL( LWMIN )
*
RETURN
*
* End of PSGEBRD
*
END
|