1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
SUBROUTINE PSGEHRD( N, ILO, IHI, A, IA, JA, DESCA, TAU, WORK,
$ LWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 25, 2001
*
* .. Scalar Arguments ..
INTEGER IA, IHI, ILO, INFO, JA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSGEHRD reduces a real general distributed matrix sub( A )
* to upper Hessenberg form H by an orthogonal similarity transforma-
* tion: Q' * sub( A ) * Q = H, where
* sub( A ) = A(IA+N-1:IA+N-1,JA+N-1:JA+N-1).
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* ILO (global input) INTEGER
* IHI (global input) INTEGER
* It is assumed that sub( A ) is already upper triangular in
* rows IA:IA+ILO-2 and IA+IHI:IA+N-1 and columns JA:JA+ILO-2
* and JA+IHI:JA+N-1. See Further Details. If N > 0,
* 1 <= ILO <= IHI <= N; otherwise set ILO = 1, IHI = N.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the N-by-N
* general distributed matrix sub( A ) to be reduced. On exit,
* the upper triangle and the first subdiagonal of sub( A ) are
* overwritten with the upper Hessenberg matrix H, and the ele-
* ments below the first subdiagonal, with the array TAU, repre-
* sent the orthogonal matrix Q as a product of elementary
* reflectors. See Further Details.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* TAU (local output) REAL array, dimension LOCc(JA+N-2)
* The scalar factors of the elementary reflectors (see Further
* Details). Elements JA:JA+ILO-2 and JA+IHI:JA+N-2 of TAU are
* set to zero. TAU is tied to the distributed matrix A.
*
* WORK (local workspace/local output) REAL array,
* dimension (LWORK)
* On exit, WORK( 1 ) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= NB*NB + NB*MAX( IHIP+1, IHLP+INLQ )
*
* where NB = MB_A = NB_A, IROFFA = MOD( IA-1, NB ),
* ICOFFA = MOD( JA-1, NB ), IOFF = MOD( IA+ILO-2, NB ),
* IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ),
* IHIP = NUMROC( IHI+IROFFA, NB, MYROW, IAROW, NPROW ),
* ILROW = INDXG2P( IA+ILO-1, NB, MYROW, RSRC_A, NPROW ),
* IHLP = NUMROC( IHI-ILO+IOFF+1, NB, MYROW, ILROW, NPROW ),
* ILCOL = INDXG2P( JA+ILO-1, NB, MYCOL, CSRC_A, NPCOL ),
* INLQ = NUMROC( N-ILO+IOFF+1, NB, MYCOL, ILCOL, NPCOL ),
*
* INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of (ihi-ilo) elementary
* reflectors
*
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:I) = 0, v(I+1) = 1 and v(IHI+1:N) = 0; v(I+2:IHI) is stored on
* exit in A(IA+ILO+I:IA+IHI-1,JA+ILO+I-2), and tau in TAU(JA+ILO+I-2).
*
* The contents of A(IA:IA+N-1,JA:JA+N-1) are illustrated by the follow-
* ing example, with N = 7, ILO = 2 and IHI = 6:
*
* on entry on exit
*
* ( a a a a a a a ) ( a a h h h h a )
* ( a a a a a a ) ( a h h h h a )
* ( a a a a a a ) ( h h h h h h )
* ( a a a a a a ) ( v2 h h h h h )
* ( a a a a a a ) ( v2 v3 h h h h )
* ( a a a a a a ) ( v2 v3 v4 h h h )
* ( a ) ( a )
*
* where a denotes an element of the original matrix sub( A ), H denotes
* a modified element of the upper Hessenberg matrix H, and vi denotes
* an element of the vector defining H(JA+ILO+I-2).
*
* Alignment requirements
* ======================
*
* The distributed submatrix sub( A ) must verify some alignment proper-
* ties, namely the following expression should be true:
* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA )
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
CHARACTER COLCTOP, ROWCTOP
INTEGER I, IACOL, IAROW, IB, ICOFFA, ICTXT, IHIP,
$ IHLP, IIA, IINFO, ILCOL, ILROW, IMCOL, INLQ,
$ IOFF, IPT, IPW, IPY, IROFFA, J, JJ, JJA, JY,
$ K, L, LWMIN, MYCOL, MYROW, NB, NPCOL, NPROW,
$ NQ
REAL EI
* ..
* .. Local Arrays ..
INTEGER DESCY( DLEN_ ), IDUM1( 3 ), IDUM2( 3 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCSET, INFOG1L,
$ INFOG2L, PCHK1MAT, PSGEMM, PSGEHD2,
$ PSLAHRD, PSLARFB, PB_TOPGET, PB_TOPSET, PXERBLA
* ..
* .. External Functions ..
INTEGER INDXG2P, NUMROC
EXTERNAL INDXG2P, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC FLOAT, MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(700+CTXT_)
ELSE
CALL CHK1MAT( N, 1, N, 1, IA, JA, DESCA, 7, INFO )
IF( INFO.EQ.0 ) THEN
NB = DESCA( NB_ )
IROFFA = MOD( IA-1, NB )
ICOFFA = MOD( JA-1, NB )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IIA, JJA, IAROW, IACOL )
IHIP = NUMROC( IHI+IROFFA, NB, MYROW, IAROW, NPROW )
IOFF = MOD( IA+ILO-2, NB )
ILROW = INDXG2P( IA+ILO-1, NB, MYROW, DESCA( RSRC_ ),
$ NPROW )
IHLP = NUMROC( IHI-ILO+IOFF+1, NB, MYROW, ILROW, NPROW )
ILCOL = INDXG2P( JA+ILO-1, NB, MYCOL, DESCA( CSRC_ ),
$ NPCOL )
INLQ = NUMROC( N-ILO+IOFF+1, NB, MYCOL, ILCOL, NPCOL )
LWMIN = NB*( NB + MAX( IHIP+1, IHLP+INLQ ) )
*
WORK( 1 ) = FLOAT( LWMIN )
LQUERY = ( LWORK.EQ.-1 )
IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
C ELSE IF( IROFFA.NE.ICOFFA .OR. IROFFA.NE.0 ) THEN
ELSE IF( IROFFA.NE.ICOFFA ) THEN
INFO = -6
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -(700+NB_)
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
END IF
IDUM1( 1 ) = ILO
IDUM2( 1 ) = 2
IDUM1( 2 ) = IHI
IDUM2( 2 ) = 3
IF( LWORK.EQ.-1 ) THEN
IDUM1( 3 ) = -1
ELSE
IDUM1( 3 ) = 1
END IF
IDUM2( 3 ) = 10
CALL PCHK1MAT( N, 1, N, 1, IA, JA, DESCA, 7, 3, IDUM1, IDUM2,
$ INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PSGEHRD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Set elements JA:JA+ILO-2 and JA+JHI-1:JA+N-2 of TAU to zero.
*
NQ = NUMROC( JA+N-2, NB, MYCOL, DESCA( CSRC_ ), NPCOL )
CALL INFOG1L( JA+ILO-2, NB, NPCOL, MYCOL, DESCA( CSRC_ ), JJ,
$ IMCOL )
DO 10 J = JJA, MIN( JJ, NQ )
TAU( J ) = ZERO
10 CONTINUE
*
CALL INFOG1L( JA+IHI-1, NB, NPCOL, MYCOL, DESCA( CSRC_ ), JJ,
$ IMCOL )
DO 20 J = JJ, NQ
TAU( J ) = ZERO
20 CONTINUE
*
* Quick return if possible
*
IF( IHI-ILO.LE.0 )
$ RETURN
*
CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', '1-tree' )
CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise', '1-tree' )
*
IPT = 1
IPY = IPT + NB * NB
IPW = IPY + IHIP * NB
CALL DESCSET( DESCY, IHI+IROFFA, NB, NB, NB, IAROW, ILCOL, ICTXT,
$ MAX( 1, IHIP ) )
*
K = ILO
IB = NB - IOFF
JY = IOFF + 1
*
* Loop over remaining block of columns
*
DO 30 L = 1, IHI-ILO+IOFF-NB, NB
I = IA + K - 1
J = JA + K - 1
*
* Reduce columns j:j+ib-1 to Hessenberg form, returning the
* matrices V and T of the block reflector H = I - V*T*V'
* which performs the reduction, and also the matrix Y = A*V*T
*
CALL PSLAHRD( IHI, K, IB, A, IA, J, DESCA, TAU, WORK( IPT ),
$ WORK( IPY ), 1, JY, DESCY, WORK( IPW ) )
*
* Apply the block reflector H to A(ia:ia+ihi-1,j+ib:ja+ihi-1)
* from the right, computing A := A - Y * V'.
* V(i+ib,ib-1) must be set to 1.
*
CALL PSELSET2( EI, A, I+IB, J+IB-1, DESCA, ONE )
CALL PSGEMM( 'No transpose', 'Transpose', IHI, IHI-K-IB+1, IB,
$ -ONE, WORK( IPY ), 1, JY, DESCY, A, I+IB, J,
$ DESCA, ONE, A, IA, J+IB, DESCA )
CALL PSELSET( A, I+IB, J+IB-1, DESCA, EI )
*
* Apply the block reflector H to A(i+1:ia+ihi-1,j+ib:ja+n-1) from
* the left
*
CALL PSLARFB( 'Left', 'Transpose', 'Forward', 'Columnwise',
$ IHI-K, N-K-IB+1, IB, A, I+1, J, DESCA,
$ WORK( IPT ), A, I+1, J+IB, DESCA, WORK( IPY ) )
*
K = K + IB
IB = NB
JY = 1
DESCY( CSRC_ ) = MOD( DESCY( CSRC_ ) + 1, NPCOL )
*
30 CONTINUE
*
* Use unblocked code to reduce the rest of the matrix
*
CALL PSGEHD2( N, K, IHI, A, IA, JA, DESCA, TAU, WORK, LWORK,
$ IINFO )
*
CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
CALL PB_TOPSET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
*
WORK( 1 ) = FLOAT( LWMIN )
*
RETURN
*
* End of PSGEHRD
*
END
|