File: psgesv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (244 lines) | stat: -rw-r--r-- 9,791 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
      SUBROUTINE PSGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB,
     $                   DESCB, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     Jan 30, 2006
*
*     .. Scalar Arguments ..
      INTEGER            IA, IB, INFO, JA, JB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * ), IPIV( * )
      REAL               A( * ), B( * )
*     ..
*
*  Purpose
*  =======
*
*  PSGESV computes the solution to a real system of linear equations
*
*                        sub( A ) * X = sub( B ),
*
*  where sub( A ) = A(IA:IA+N-1,JA:JA+N-1) is an N-by-N distributed
*  matrix and X and sub( B ) = B(IB:IB+N-1,JB:JB+NRHS-1) are N-by-NRHS
*  distributed matrices.
*
*  The LU decomposition with partial pivoting and row interchanges is
*  used to factor sub( A ) as sub( A ) = P * L * U, where P is a permu-
*  tation matrix, L is unit lower triangular, and U is upper triangular.
*  L and U are stored in sub( A ). The factored form of sub( A ) is then
*  used to solve the system of equations sub( A ) * X = sub( B ).
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  This routine requires square block decomposition ( MB_A = NB_A ).
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed submatrix sub( B ). NRHS >= 0.
*
*  A       (local input/local output) REAL pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, the local pieces of the N-by-N distributed matrix
*          sub( A ) to be factored. On exit, this array contains the
*          local pieces of the factors L and U from the factorization
*          sub( A ) = P*L*U; the unit diagonal elements of L are not
*          stored.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local output) INTEGER array, dimension ( LOCr(M_A)+MB_A )
*          This array contains the pivoting information.
*          IPIV(i) -> The global row local row i was swapped with.
*          This array is tied to the distributed matrix A.
*
*  B       (local input/local output) REAL pointer into the
*          local memory to an array of dimension
*          (LLD_B,LOCc(JB+NRHS-1)).  On entry, the right hand side
*          distributed matrix sub( B ). On exit, if INFO = 0, sub( B )
*          is overwritten by the solution distributed matrix X.
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = K, U(IA+K-1,JA+K-1) is exactly zero.
*                The factorization has been completed, but the factor U
*                is exactly singular, so the solution could not be
*                computed.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            IAROW, IBROW, ICOFFA, ICTXT, IROFFA, IROFFB,
     $                   MYCOL, MYROW, NPCOL, NPROW
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 1 ), IDUM2( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK2MAT, PSGETRF,
     $                   PSGETRS, PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            INDXG2P
      EXTERNAL           INDXG2P
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(600+CTXT_)
      ELSE
         CALL CHK1MAT( N, 1, N, 1, IA, JA, DESCA, 6, INFO )
         CALL CHK1MAT( N, 1, NRHS, 2, IB, JB, DESCB, 11, INFO )
         IF( INFO.EQ.0 ) THEN
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $                       NPROW )
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IROFFB = MOD( IB-1, DESCB( MB_ ) )
            IF( IROFFA.NE.0 ) THEN
               INFO = -4
            ELSE IF( ICOFFA.NE.0 ) THEN
               INFO = -5
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(600+NB_)
            ELSE IF( IBROW.NE.IAROW .OR. ICOFFA.NE.IROFFB ) THEN
               INFO = -9
            ELSE IF( DESCB( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(1100+NB_)
            ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
               INFO = -(1100+CTXT_)
            END IF
         END IF
         CALL PCHK2MAT( N, 1, N, 1, IA, JA, DESCA, 6, N, 1, NRHS, 2,
     $                  IB, JB, DESCB, 11, 0, IDUM1, IDUM2, INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PSGESV', -INFO )
         RETURN
      END IF
*
*     Compute the LU factorization of sub( A ).
*
      CALL PSGETRF( N, N, A, IA, JA, DESCA, IPIV, INFO )
*
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system sub( A ) * X = sub( B ), overwriting sub( B )
*        with X.
*
         CALL PSGETRS( 'No transpose', N, NRHS, A, IA, JA, DESCA, IPIV,
     $                 B, IB, JB, DESCB, INFO )
*
      END IF
*
      RETURN
*
*     End of PSGESV
*
      END