File: psgesvx.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (829 lines) | stat: -rw-r--r-- 35,156 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
      SUBROUTINE PSGESVX( FACT, TRANS, N, NRHS, A, IA, JA, DESCA, AF,
     $                    IAF, JAF, DESCAF, IPIV, EQUED, R, C, B, IB,
     $                    JB, DESCB, X, IX, JX, DESCX, RCOND, FERR,
     $                    BERR, WORK, LWORK, IWORK, LIWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, TRANS
      INTEGER            IA, IAF, IB, INFO, IX, JA, JAF, JB, JX, LIWORK,
     $                   LWORK, N, NRHS
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCAF( * ), DESCB( * ),
     $                   DESCX( * ), IPIV( * ), IWORK( * )
      REAL               A( * ), AF( * ), B( * ), BERR( * ), C( * ),
     $                   FERR( * ), R( * ), WORK( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PSGESVX uses the LU factorization to compute the solution to a real
*  system of linear equations
*
*        A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
*
*  where A(IA:IA+N-1,JA:JA+N-1) is an N-by-N matrix and X and
*  B(IB:IB+N-1,JB:JB+NRHS-1) are N-by-NRHS matrices.
*
*  Error bounds on the solution and a condition estimate are also
*  provided.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Description
*  ===========
*
*  In the following description, A denotes A(IA:IA+N-1,JA:JA+N-1),
*  B denotes B(IB:IB+N-1,JB:JB+NRHS-1) and X denotes
*  X(IX:IX+N-1,JX:JX+NRHS-1).
*
*  The following steps are performed:
*
*  1. If FACT = 'E', real scaling factors are computed to equilibrate
*     the system:
*        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
*        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
*        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
*     Whether or not the system will be equilibrated depends on the
*     scaling of the matrix A, but if equilibration is used, A is
*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
*     or diag(C)*B (if TRANS = 'T' or 'C').
*
*  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
*     matrix A (after equilibration if FACT = 'E') as
*        A = P * L * U,
*     where P is a permutation matrix, L is a unit lower triangular
*     matrix, and U is upper triangular.
*
*  3. The factored form of A is used to estimate the condition number
*     of the matrix A.  If the reciprocal of the condition number is
*     less than machine precision, steps 4-6 are skipped.
*
*  4. The system of equations is solved for X using the factored form
*     of A.
*
*  5. Iterative refinement is applied to improve the computed solution
*     matrix and calculate error bounds and backward error estimates
*     for it.
*
*  6. If FACT = 'E' and equilibration was used, the matrix X is
*     premultiplied by diag(C) (if TRANS = 'N') or diag(R) (if
*     TRANS = 'T' or 'C') so that it solves the original system
*     before equilibration.
*
*  Arguments
*  =========
*
*  FACT    (global input) CHARACTER
*          Specifies whether or not the factored form of the matrix
*          A(IA:IA+N-1,JA:JA+N-1) is supplied on entry, and if not,
*          whether the matrix A(IA:IA+N-1,JA:JA+N-1) should be
*          equilibrated before it is factored.
*          = 'F':  On entry, AF(IAF:IAF+N-1,JAF:JAF+N-1) and IPIV con-
*                  tain the factored form of A(IA:IA+N-1,JA:JA+N-1).
*                  If EQUED is not 'N', the matrix
*                  A(IA:IA+N-1,JA:JA+N-1) has been equilibrated with
*                  scaling factors given by R and C.
*                  A(IA:IA+N-1,JA:JA+N-1), AF(IAF:IAF+N-1,JAF:JAF+N-1),
*                  and IPIV are not modified.
*          = 'N':  The matrix A(IA:IA+N-1,JA:JA+N-1) will be copied to
*                  AF(IAF:IAF+N-1,JAF:JAF+N-1) and factored.
*          = 'E':  The matrix A(IA:IA+N-1,JA:JA+N-1) will be equili-
*                  brated if necessary, then copied to
*                  AF(IAF:IAF+N-1,JAF:JAF+N-1) and factored.
*
*  TRANS   (global input) CHARACTER
*          Specifies the form of the system of equations:
*          = 'N':  A(IA:IA+N-1,JA:JA+N-1) * X(IX:IX+N-1,JX:JX+NRHS-1)
*                = B(IB:IB+N-1,JB:JB+NRHS-1)     (No transpose)
*          = 'T':  A(IA:IA+N-1,JA:JA+N-1)**T * X(IX:IX+N-1,JX:JX+NRHS-1)
*                = B(IB:IB+N-1,JB:JB+NRHS-1)  (Transpose)
*          = 'C':  A(IA:IA+N-1,JA:JA+N-1)**H * X(IX:IX+N-1,JX:JX+NRHS-1)
*                = B(IB:IB+N-1,JB:JB+NRHS-1)  (Transpose)
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix A(IA:IA+N-1,JA:JA+N-1).
*          N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right-hand sides, i.e., the number of columns
*          of the distributed submatrices B(IB:IB+N-1,JB:JB+NRHS-1) and
*          X(IX:IX+N-1,JX:JX+NRHS-1).  NRHS >= 0.
*
*  A       (local input/local output) REAL pointer into
*          the local memory to an array of local dimension
*          (LLD_A,LOCc(JA+N-1)).  On entry, the N-by-N matrix
*          A(IA:IA+N-1,JA:JA+N-1).  If FACT = 'F' and EQUED is not 'N',
*          then A(IA:IA+N-1,JA:JA+N-1) must have been equilibrated by
*          the scaling factors in R and/or C.  A(IA:IA+N-1,JA:JA+N-1) is
*          not modified if FACT = 'F' or  'N', or if FACT = 'E' and
*          EQUED = 'N' on exit.
*
*          On exit, if EQUED .ne. 'N', A(IA:IA+N-1,JA:JA+N-1) is scaled
*          as follows:
*          EQUED = 'R':  A(IA:IA+N-1,JA:JA+N-1) :=
*                                      diag(R) * A(IA:IA+N-1,JA:JA+N-1)
*          EQUED = 'C':  A(IA:IA+N-1,JA:JA+N-1) :=
*                                      A(IA:IA+N-1,JA:JA+N-1) * diag(C)
*          EQUED = 'B':  A(IA:IA+N-1,JA:JA+N-1) :=
*                            diag(R) * A(IA:IA+N-1,JA:JA+N-1) * diag(C).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  AF      (local input or local output) REAL pointer
*          into the local memory to an array of local dimension
*          (LLD_AF,LOCc(JA+N-1)).  If FACT = 'F', then
*          AF(IAF:IAF+N-1,JAF:JAF+N-1) is an input argument and on
*          entry contains the factors L and U from the factorization
*          A(IA:IA+N-1,JA:JA+N-1) = P*L*U as computed by PSGETRF.
*          If EQUED .ne. 'N', then AF is the factored form of the
*          equilibrated matrix A(IA:IA+N-1,JA:JA+N-1).
*
*          If FACT = 'N', then AF(IAF:IAF+N-1,JAF:JAF+N-1) is an output
*          argument and on exit returns the factors L and U from the
*          factorization A(IA:IA+N-1,JA:JA+N-1) = P*L*U of the original
*          matrix A(IA:IA+N-1,JA:JA+N-1).
*
*          If FACT = 'E', then AF(IAF:IAF+N-1,JAF:JAF+N-1) is an output
*          argument and on exit returns the factors L and U from the
*          factorization A(IA:IA+N-1,JA:JA+N-1) = P*L*U of the equili-
*          brated matrix A(IA:IA+N-1,JA:JA+N-1) (see the description of
*          A(IA:IA+N-1,JA:JA+N-1) for the form of the equilibrated
*          matrix).
*
*  IAF     (global input) INTEGER
*          The row index in the global array AF indicating the first
*          row of sub( AF ).
*
*  JAF     (global input) INTEGER
*          The column index in the global array AF indicating the
*          first column of sub( AF ).
*
*  DESCAF  (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix AF.
*
*  IPIV    (local input or local output) INTEGER array, dimension
*          LOCr(M_A)+MB_A. If FACT = 'F', then IPIV is an input argu-
*          ment and on entry contains the pivot indices from the fac-
*          torization A(IA:IA+N-1,JA:JA+N-1) = P*L*U as computed by
*          PSGETRF; IPIV(i) -> The global row local row i was
*          swapped with.  This array must be aligned with
*          A( IA:IA+N-1, * ).
*
*          If FACT = 'N', then IPIV is an output argument and on exit
*          contains the pivot indices from the factorization
*          A(IA:IA+N-1,JA:JA+N-1) = P*L*U of the original matrix
*          A(IA:IA+N-1,JA:JA+N-1).
*
*          If FACT = 'E', then IPIV is an output argument and on exit
*          contains the pivot indices from the factorization
*          A(IA:IA+N-1,JA:JA+N-1) = P*L*U of the equilibrated matrix
*          A(IA:IA+N-1,JA:JA+N-1).
*
*  EQUED   (global input or global output) CHARACTER
*          Specifies the form of equilibration that was done.
*          = 'N':  No equilibration (always true if FACT = 'N').
*          = 'R':  Row equilibration, i.e., A(IA:IA+N-1,JA:JA+N-1) has
*                  been premultiplied by diag(R).
*          = 'C':  Column equilibration, i.e., A(IA:IA+N-1,JA:JA+N-1)
*                  has been postmultiplied by diag(C).
*          = 'B':  Both row and column equilibration, i.e.,
*                  A(IA:IA+N-1,JA:JA+N-1) has been replaced by
*                  diag(R) * A(IA:IA+N-1,JA:JA+N-1) * diag(C).
*          EQUED is an input variable if FACT = 'F'; otherwise, it is an
*          output variable.
*
*  R       (local input or local output) REAL array,
*                                                  dimension LOCr(M_A).
*          The row scale factors for A(IA:IA+N-1,JA:JA+N-1).
*          If EQUED = 'R' or 'B', A(IA:IA+N-1,JA:JA+N-1) is multiplied
*          on the left by diag(R); if EQUED='N' or 'C', R is not acces-
*          sed.  R is an input variable if FACT = 'F'; otherwise, R is
*          an output variable.
*          If FACT = 'F' and EQUED = 'R' or 'B', each element of R must
*          be positive.
*          R is replicated in every process column, and is aligned
*          with the distributed matrix A.
*
*  C       (local input or local output) REAL array,
*                                                  dimension LOCc(N_A).
*          The column scale factors for A(IA:IA+N-1,JA:JA+N-1).
*          If EQUED = 'C' or 'B', A(IA:IA+N-1,JA:JA+N-1) is multiplied
*          on the right by diag(C); if EQUED = 'N' or 'R', C is not
*          accessed.  C is an input variable if FACT = 'F'; otherwise,
*          C is an output variable.  If FACT = 'F' and EQUED = 'C' or
*          'B', each element of C must be positive.
*          C is replicated in every process row, and is aligned with
*          the distributed matrix A.
*
*  B       (local input/local output) REAL pointer
*          into the local memory to an array of local dimension
*          (LLD_B,LOCc(JB+NRHS-1) ).  On entry, the N-by-NRHS right-hand
*          side matrix B(IB:IB+N-1,JB:JB+NRHS-1). On exit, if
*          EQUED = 'N', B(IB:IB+N-1,JB:JB+NRHS-1) is not modified; if
*          TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
*          diag(R)*B(IB:IB+N-1,JB:JB+NRHS-1); if TRANS = 'T' or 'C'
*          and EQUED = 'C' or 'B', B(IB:IB+N-1,JB:JB+NRHS-1) is over-
*          written by diag(C)*B(IB:IB+N-1,JB:JB+NRHS-1).
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  X       (local input/local output) REAL pointer
*          into the local memory to an array of local dimension
*          (LLD_X, LOCc(JX+NRHS-1)).  If INFO = 0, the N-by-NRHS
*          solution matrix X(IX:IX+N-1,JX:JX+NRHS-1) to the original
*          system of equations.  Note that A(IA:IA+N-1,JA:JA+N-1) and
*          B(IB:IB+N-1,JB:JB+NRHS-1) are modified on exit if
*          EQUED .ne. 'N', and the solution to the equilibrated system
*          is inv(diag(C))*X(IX:IX+N-1,JX:JX+NRHS-1) if TRANS = 'N'
*          and EQUED = 'C' or 'B', or
*          inv(diag(R))*X(IX:IX+N-1,JX:JX+NRHS-1) if TRANS = 'T' or 'C'
*          and EQUED = 'R' or 'B'.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  RCOND   (global output) REAL
*          The estimate of the reciprocal condition number of the matrix
*          A(IA:IA+N-1,JA:JA+N-1) after equilibration (if done).  If
*          RCOND is less than the machine precision (in particular, if
*          RCOND = 0), the matrix is singular to working precision.
*          This condition is indicated by a return code of INFO > 0.
*
*  FERR    (local output) REAL array, dimension LOCc(N_B)
*          The estimated forward error bounds for each solution vector
*          X(j) (the j-th column of the solution matrix
*          X(IX:IX+N-1,JX:JX+NRHS-1). If XTRUE is the true solution,
*          FERR(j) bounds the magnitude of the largest entry in
*          (X(j) - XTRUE) divided by the magnitude of the largest entry
*          in X(j).  The estimate is as reliable as the estimate for
*          RCOND, and is almost always a slight overestimate of the
*          true error.  FERR is replicated in every process row, and is
*          aligned with the matrices B and X.
*
*  BERR    (local output) REAL array, dimension LOCc(N_B).
*          The componentwise relative backward error of each solution
*          vector X(j) (i.e., the smallest relative change in
*          any entry of A(IA:IA+N-1,JA:JA+N-1) or
*          B(IB:IB+N-1,JB:JB+NRHS-1) that makes X(j) an exact solution).
*          BERR is replicated in every process row, and is aligned
*          with the matrices B and X.
*
*  WORK    (local workspace/local output) REAL array,
*                                                    dimension (LWORK)
*          On exit, WORK(1) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK = MAX( PSGECON( LWORK ), PSGERFS( LWORK ) )
*                  + LOCr( N_A ).
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IWORK   (local workspace/local output) INTEGER array,
*                                                  dimension (LIWORK)
*          On exit, IWORK(1) returns the minimal and optimal LIWORK.
*
*  LIWORK  (local or global input) INTEGER
*          The dimension of the array IWORK.
*          LIWORK is local input and must be at least
*          LIWORK = LOCr(N_A).
*
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, and i is
*                <= N:  U(IA+I-1,IA+I-1) is exactly zero.  The
*                       factorization has been completed, but the
*                       factor U is exactly singular, so the solution
*                       and error bounds could not be computed.
*                = N+1: RCOND is less than machine precision.  The
*                       factorization has been completed, but the
*                       matrix is singular to working precision, and
*                       the solution and error bounds have not been
*                       computed.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLEQU, EQUIL, LQUERY, NOFACT, NOTRAN, ROWEQU
      CHARACTER          NORM
      INTEGER            CONWRK, I, IACOL, IAROW, IAFROW, IBROW, IBCOL,
     $                   ICOFFA, ICOFFB, ICOFFX, ICTXT, IDUMM,
     $                   IIA, IIB, IIX,
     $                   INFEQU, IROFFA, IROFFAF, IROFFB,
     $                   IROFFX, IXCOL, IXROW, J, JJA, JJB, JJX,
     $                   LCM, LCMQ,
     $                   LIWMIN, LWMIN, MYCOL, MYROW, NP, NPCOL, NPROW,
     $                   NQ, NQB, NRHSQ, RFSWRK
      REAL               AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
     $                   ROWCND, SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            CDESC( DLEN_ ), IDUM1( 5 ), IDUM2( 5 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCSET, PCHK2MAT,
     $                   INFOG2L, PSGECON, PSGEEQU, PSGERFS,
     $                   PSGETRF, PSGETRS, PSLACPY,
     $                   PSLAQGE, PSCOPY, PXERBLA, SGEBR2D,
     $                   SGEBS2D, SGAMN2D, SGAMX2D
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, ILCM, INDXG2P, NUMROC
      REAL               PSLAMCH, PSLANGE
      EXTERNAL           ICEIL, ILCM, INDXG2P, LSAME, NUMROC, PSLANGE,
     $                   PSLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR, MAX, MIN, MOD, REAL
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(800+CTXT_)
      ELSE
         CALL CHK1MAT( N, 3, N, 3, IA, JA, DESCA, 8, INFO )
         IF( LSAME( FACT, 'F' ) )
     $      CALL CHK1MAT( N, 3, N, 3, IAF, JAF, DESCAF, 12, INFO )
         CALL CHK1MAT( N, 3, NRHS, 4, IB, JB, DESCB, 20, INFO )
         CALL CHK1MAT( N, 3, NRHS, 4, IX, JX, DESCX, 24, INFO )
         NOFACT = LSAME( FACT, 'N' )
         EQUIL = LSAME( FACT, 'E' )
         NOTRAN = LSAME( TRANS, 'N' )
         IF( NOFACT .OR. EQUIL ) THEN
            EQUED = 'N'
            ROWEQU = .FALSE.
            COLEQU = .FALSE.
         ELSE
            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
            SMLNUM = PSLAMCH( ICTXT, 'Safe minimum' )
            BIGNUM = ONE / SMLNUM
         END IF
         IF( INFO.EQ.0 ) THEN
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            IAFROW = INDXG2P( IAF, DESCAF( MB_ ), MYROW,
     $                        DESCAF( RSRC_ ), NPROW )
            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
     $                       NPROW )
            IXROW = INDXG2P( IX, DESCX( MB_ ), MYROW, DESCX( RSRC_ ),
     $                       NPROW )
            IROFFA = MOD( IA-1, DESCA( MB_ ) )
            IROFFAF = MOD( IAF-1, DESCAF( MB_ ) )
            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
            IROFFB = MOD( IB-1, DESCB( MB_ ) )
            ICOFFB = MOD( JB-1, DESCB( NB_ ) )
            IROFFX = MOD( IX-1, DESCX( MB_ ) )
            ICOFFX = MOD( JX-1, DESCX( NB_ ) )
            CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW,
     $                    MYCOL, IIA, JJA, IAROW, IACOL )
            NP = NUMROC( N+IROFFA, DESCA( MB_ ), MYROW, IAROW,
     $                   NPROW )
            IF( MYROW.EQ.IAROW )
     $         NP = NP-IROFFA
            NQ = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL,
     $                   NPCOL )
            IF( MYCOL.EQ.IACOL )
     $         NQ = NQ-ICOFFA
            NQB = ICEIL( N+IROFFA, DESCA( NB_ )*NPCOL )
            LCM = ILCM( NPROW, NPCOL )
            LCMQ = LCM / NPCOL
            CONWRK = 2*NP + 2*NQ + MAX( 2, MAX( DESCA( NB_ )*
     $               MAX( 1, ICEIL( NPROW-1, NPCOL ) ), NQ +
     $               DESCA( NB_ )*
     $               MAX( 1, ICEIL( NPCOL-1, NPROW ) ) ) )
            RFSWRK = 3*NP
            IF( LSAME( TRANS, 'N' ) ) THEN
               RFSWRK = RFSWRK + NP + NQ +
     $                 ICEIL( NQB, LCMQ )*DESCA( NB_ )
            ELSE IF( LSAME( TRANS, 'T' ).OR.LSAME( TRANS, 'C' ) ) THEN
               RFSWRK = RFSWRK + NP + NQ
            END IF
            LWMIN = MAX( CONWRK, RFSWRK )
            WORK( 1 ) = REAL( LWMIN )
            LIWMIN = NP
            IWORK( 1 ) = LIWMIN
            IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND.
     $          .NOT.LSAME( FACT, 'F' ) ) THEN
               INFO = -1
            ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND.
     $         .NOT. LSAME( TRANS, 'C' ) ) THEN
               INFO = -2
            ELSE IF( IROFFA.NE.0 ) THEN
               INFO = -6
            ELSE IF( ICOFFA.NE.0 .OR. IROFFA.NE.ICOFFA ) THEN
               INFO = -7
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(800+NB_)
            ELSE IF( IAFROW.NE.IAROW ) THEN
               INFO = -10
            ELSE IF( IROFFAF.NE.0 ) THEN
               INFO = -10
            ELSE IF( ICTXT.NE.DESCAF( CTXT_ ) ) THEN
               INFO = -(1200+CTXT_)
            ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
               INFO = -13
            ELSE
               IF( ROWEQU ) THEN
                  RCMIN = BIGNUM
                  RCMAX = ZERO
                  DO 10 J = IIA, IIA + NP - 1
                     RCMIN = MIN( RCMIN, R( J ) )
                     RCMAX = MAX( RCMAX, R( J ) )
   10             CONTINUE
                  CALL SGAMN2D( ICTXT, 'Columnwise', ' ', 1, 1, RCMIN,
     $                          1, IDUMM, IDUMM, -1, -1, MYCOL )
                  CALL SGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, RCMAX,
     $                          1, IDUMM, IDUMM, -1, -1, MYCOL )
                  IF( RCMIN.LE.ZERO ) THEN
                     INFO = -14
                  ELSE IF( N.GT.0 ) THEN
                     ROWCND = MAX( RCMIN, SMLNUM ) /
     $                        MIN( RCMAX, BIGNUM )
                  ELSE
                     ROWCND = ONE
                  END IF
               END IF
               IF( COLEQU .AND. INFO.EQ.0 ) THEN
                  RCMIN = BIGNUM
                  RCMAX = ZERO
                  DO 20 J = JJA, JJA+NQ-1
                     RCMIN = MIN( RCMIN, C( J ) )
                     RCMAX = MAX( RCMAX, C( J ) )
   20             CONTINUE
                  CALL SGAMN2D( ICTXT, 'Rowwise', ' ', 1, 1, RCMIN,
     $                          1, IDUMM, IDUMM, -1, -1, MYCOL )
                  CALL SGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, RCMAX,
     $                          1, IDUMM, IDUMM, -1, -1, MYCOL )
                  IF( RCMIN.LE.ZERO ) THEN
                     INFO = -15
                  ELSE IF( N.GT.0 ) THEN
                     COLCND = MAX( RCMIN, SMLNUM ) /
     $                        MIN( RCMAX, BIGNUM )
                  ELSE
                     COLCND = ONE
                  END IF
               END IF
            END IF
         END IF
*
         WORK( 1 ) = REAL( LWMIN )
         IWORK( 1 ) = LIWMIN
         LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
         IF( INFO.EQ.0 ) THEN
            IF( IBROW.NE.IAROW ) THEN
               INFO = -18
            ELSE IF( IXROW.NE.IBROW ) THEN
               INFO = -22
            ELSE IF( DESCB( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(2000+NB_)
            ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
               INFO = -(2000+CTXT_)
            ELSE IF( DESCX( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(2400+NB_)
            ELSE IF( ICTXT.NE.DESCX( CTXT_ ) ) THEN
               INFO = -(2400+CTXT_)
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -29
            ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -31
            END IF
            IDUM1( 1 ) = ICHAR( FACT )
            IDUM2( 1 ) = 1
            IDUM1( 2 ) = ICHAR( TRANS )
            IDUM2( 2 ) = 2
            IF( LSAME( FACT, 'F' ) ) THEN
               IDUM1( 3 ) = ICHAR( EQUED )
               IDUM2( 3 ) = 14
               IF( LWORK.EQ.-1 ) THEN
                  IDUM1( 4 ) = -1
               ELSE
                  IDUM1( 4 ) = 1
               END IF
               IDUM2( 4 ) = 29
               IF( LIWORK.EQ.-1 ) THEN
                  IDUM1( 5 ) = -1
               ELSE
                  IDUM1( 5 ) = 1
               END IF
               IDUM2( 5 ) = 31
               CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 8, N, 3,
     $                        NRHS, 4, IB, JB, DESCB, 20, 5, IDUM1,
     $                        IDUM2, INFO )
            ELSE
               IF( LWORK.EQ.-1 ) THEN
                  IDUM1( 3 ) = -1
               ELSE
                  IDUM1( 3 ) = 1
               END IF
               IDUM2( 3 ) = 29
               IF( LIWORK.EQ.-1 ) THEN
                  IDUM1( 4 ) = -1
               ELSE
                  IDUM1( 4 ) = 1
               END IF
               IDUM2( 4 ) = 31
               CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 8, N, 3,
     $                        NRHS, 4, IB, JB, DESCB, 20, 4, IDUM1,
     $                        IDUM2, INFO )
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PSGESVX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL PSGEEQU( N, N, A, IA, JA, DESCA, R, C, ROWCND, COLCND,
     $                 AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL PSLAQGE( N, N, A, IA, JA, DESCA, R, C, ROWCND, COLCND,
     $                    AMAX, EQUED )
            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         END IF
      END IF
*
*     Scale the right-hand side.
*
      CALL INFOG2L( IB, JB, DESCB, NPROW, NPCOL, MYROW, MYCOL, IIB,
     $              JJB, IBROW, IBCOL )
      NP = NUMROC( N+IROFFB, DESCB( MB_ ), MYROW, IBROW, NPROW )
      NRHSQ = NUMROC( NRHS+ICOFFB, DESCB( NB_ ), MYCOL, IBCOL, NPCOL )
      IF( MYROW.EQ.IBROW )
     $   NP = NP-IROFFB
      IF( MYCOL.EQ.IBCOL )
     $   NRHSQ = NRHSQ-ICOFFB
*
      IF( NOTRAN ) THEN
         IF( ROWEQU ) THEN
            DO 40 J = JJB, JJB+NRHSQ-1
               DO 30 I = IIB, IIB+NP-1
                  B( I+( J-1 )*DESCB( LLD_ ) ) = R( I )*
     $                                     B( I+( J-1 )*DESCB( LLD_ ) )
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( COLEQU ) THEN
*
*        Transpose the Column scale factors
*
         CALL DESCSET( CDESC, 1, N+ICOFFA, 1, DESCA( NB_ ), MYROW,
     $                 IACOL, ICTXT, 1 )
         CALL PSCOPY( N, C, 1, JA, CDESC, CDESC( LLD_ ), WORK, IB, JB,
     $                DESCB, 1 )
         IF( MYCOL.EQ.IBCOL ) THEN
            CALL SGEBS2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IIB ),
     $                    DESCB( LLD_ ) )
         ELSE
            CALL SGEBR2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK( IIB ),
     $                    DESCB( LLD_ ), MYROW, IBCOL )
         END IF
         DO 60 J = JJB, JJB+NRHSQ-1
            DO 50 I = IIB, IIB+NP-1
               B( I+( J-1 )*DESCB( LLD_ ) ) = WORK( I )*
     $                                     B( I+( J-1 )*DESCB( LLD_ ) )
   50       CONTINUE
   60    CONTINUE
      END IF
*
      IF( NOFACT.OR.EQUIL ) THEN
*
*        Compute the LU factorization of A.
*
         CALL PSLACPY( 'Full', N, N, A, IA, JA, DESCA, AF, IAF, JAF,
     $                 DESCAF )
         CALL PSGETRF( N, N, AF, IAF, JAF, DESCAF, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.NE.0 ) THEN
            IF( INFO.GT.0 )
     $         RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      IF( NOTRAN ) THEN
         NORM = '1'
      ELSE
         NORM = 'I'
      END IF
      ANORM = PSLANGE( NORM, N, N, A, IA, JA, DESCA, WORK )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL PSGECON( NORM, N, AF, IAF, JAF, DESCAF, ANORM, RCOND, WORK,
     $              LWORK, IWORK, LIWORK, INFO )
*
*     Return if the matrix is singular to working precision.
*
      IF( RCOND.LT.PSLAMCH( ICTXT, 'Epsilon' ) ) THEN
         INFO = IA + N
         RETURN
      END IF
*
*     Compute the solution matrix X.
*
      CALL PSLACPY( 'Full', N, NRHS, B, IB, JB, DESCB, X, IX, JX,
     $              DESCX )
      CALL PSGETRS( TRANS, N, NRHS, AF, IAF, JAF, DESCAF, IPIV, X, IX,
     $              JX, DESCX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL PSGERFS( TRANS, N, NRHS, A, IA, JA, DESCA, AF, IAF, JAF,
     $              DESCAF, IPIV, B, IB, JB, DESCB, X, IX, JX, DESCX,
     $              FERR, BERR, WORK, LWORK, IWORK, LIWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX,
     $              JJX, IXROW, IXCOL )
      NP = NUMROC( N+IROFFX, DESCX( MB_ ), MYROW, IXROW, NPROW )
      NRHSQ = NUMROC( NRHS+ICOFFX, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
      IF( MYROW.EQ.IBROW )
     $   NP = NP-IROFFX
      IF( MYCOL.EQ.IBCOL )
     $   NRHSQ = NRHSQ-ICOFFX
*
      IF( NOTRAN ) THEN
         IF( COLEQU ) THEN
*
*           Transpose the column scaling factors
*
            CALL DESCSET( CDESC, 1, N+ICOFFA, 1, DESCA( NB_ ), MYROW,
     $                    IACOL, ICTXT, 1 )
            CALL PSCOPY( N, C, 1, JA, CDESC, CDESC( LLD_ ), WORK, IX,
     $                   JX, DESCX, 1 )
            IF( MYCOL.EQ.IBCOL ) THEN
                CALL SGEBS2D( ICTXT, 'Rowwise', ' ', NP, 1,
     $                        WORK( IIX ), DESCX( LLD_ ) )
            ELSE
                CALL SGEBR2D( ICTXT, 'Rowwise', ' ', NP, 1,
     $                        WORK( IIX ), DESCX( LLD_ ), MYROW, IBCOL )
            END IF
*
            DO 80 J = JJX, JJX+NRHSQ-1
               DO 70 I = IIX, IIX+NP-1
                  X( I+( J-1 )*DESCX( LLD_ ) ) = WORK( I )*
     $                                      X( I+( J-1 )*DESCX( LLD_ ) )
   70          CONTINUE
   80       CONTINUE
            DO 90 J = JJX, JJX+NRHSQ-1
               FERR( J ) = FERR( J ) / COLCND
   90       CONTINUE
         END IF
      ELSE IF( ROWEQU ) THEN
         DO 110 J = JJX, JJX+NRHSQ-1
            DO 100 I = IIX, IIX+NP-1
               X( I+( J-1 )*DESCX( LLD_ ) ) = R( I )*
     $                                     X( I+( J-1 )*DESCX( LLD_ ) )
  100       CONTINUE
  110    CONTINUE
         DO 120 J = JJX, JJX+NRHSQ-1
            FERR( J ) = FERR( J ) / ROWCND
  120    CONTINUE
      END IF
*
      WORK( 1 ) = REAL( LWMIN )
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of PSGESVX
*
      END