File: pslacp3.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (313 lines) | stat: -rw-r--r-- 12,576 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
      SUBROUTINE PSLACP3( M, I, A, DESCA, B, LDB, II, JJ, REV )
      IMPLICIT NONE
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 25, 2001
*
*     .. Scalar Arguments ..
      INTEGER            I, II, JJ, LDB, M, REV
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               A( * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PSLACP3 is an auxiliary routine that copies from a global parallel
*    array into a local replicated array or vise versa.  Notice that
*    the entire submatrix that is copied gets placed on one node or
*    more.  The receiving node can be specified precisely, or all nodes
*    can receive, or just one row or column of nodes.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          M is the order of the square submatrix that is copied.
*          M >= 0.
*          Unchanged on exit
*
*  I       (global input) INTEGER
*          A(I,I) is the global location that the copying starts from.
*          Unchanged on exit.
*
*  A       (global input/output) REAL             array, dimension
*          (DESCA(LLD_),*)
*          On entry, the parallel matrix to be copied into or from.
*          On exit, if REV=1, the copied data.
*          Unchanged on exit if REV=0.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  B       (local input/output) REAL             array of size (LDB,M)
*          If REV=0, this is the global portion of the array
*             A(I:I+M-1,I:I+M-1).
*          If REV=1, this is the unchanged on exit.
*
*  LDB     (local input) INTEGER
*          The leading dimension of B.
*
*  II      (global input) INTEGER
*          By using REV 0 & 1, data can be sent out and returned again.
*          If REV=0, then II is destination row index for the node(s)
*             receiving the replicated B.  
*             If II>=0,JJ>=0, then node (II,JJ) receives the data
*             If II=-1,JJ>=0, then all rows in column JJ receive the
*                             data
*             If II>=0,JJ=-1, then all cols in row II receive the data
*             If II=-1,JJ=-1, then all nodes receive the data
*          If REV<>0, then II is the source row index for the node(s)
*             sending the replicated B.
*
*  JJ      (global input) INTEGER
*          Similar description as II above
*
*  REV     (global input) INTEGER
*          Use REV = 0 to send global A into locally replicated B 
*             (on node (II,JJ)).
*          Use REV <> 0 to send locally replicated B from node (II,JJ)
*             to its owner (which changes depending on its location in
*             A) into the global A.
*
*  Implemented by:  G. Henry, May 1, 1997
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0 )
*     ..
*     .. Local Scalars ..
      INTEGER            COL, CONTXT, HBL, IAFIRST, ICOL1, ICOL2, IDI,
     $                   IDJ, IFIN, III, IROW1, IROW2, ISTOP, ISTOPI,
     $                   ISTOPJ, ITMP, JAFIRST, JJJ, LDA, MYCOL, MYROW,
     $                   NPCOL, NPROW, ROW
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      EXTERNAL           NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, SGEBR2D, SGEBS2D, SGERV2D,
     $                   SGESD2D, INFOG1L
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MOD
*     ..
*     .. Executable Statements ..
*
      IF( M.LE.0 )
     $   RETURN
*
      HBL = DESCA( MB_ )
      CONTXT = DESCA( CTXT_ )
      LDA = DESCA( LLD_ )
      IAFIRST = DESCA( RSRC_ )
      JAFIRST = DESCA( CSRC_ )
*
      CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      IF( REV.EQ.0 ) THEN
         DO 20 IDI = 1, M
            DO 10 IDJ = 1, M
               B( IDI, IDJ ) = ZERO
   10       CONTINUE
   20    CONTINUE
      END IF
*
      IFIN = I + M - 1
*
      IF( MOD( I+HBL, HBL ).NE.0 ) THEN
         ISTOP = MIN( I+HBL-MOD( I+HBL, HBL ), IFIN )
      ELSE
         ISTOP = I
      END IF
      IDJ = I
      ISTOPJ = ISTOP
      IF( IDJ.LE.IFIN ) THEN
   30    CONTINUE
         IDI = I
         ISTOPI = ISTOP
         IF( IDI.LE.IFIN ) THEN
   40       CONTINUE
            ROW = MOD( ( IDI-1 ) / HBL + IAFIRST, NPROW )
            COL = MOD( ( IDJ-1 ) / HBL + JAFIRST, NPCOL )
            CALL INFOG1L( IDI, HBL, NPROW, ROW, IAFIRST, IROW1, ITMP )
            IROW2 = NUMROC( ISTOPI, HBL, ROW, IAFIRST, NPROW )
            CALL INFOG1L( IDJ, HBL, NPCOL, COL, JAFIRST, ICOL1, ITMP )
            ICOL2 = NUMROC( ISTOPJ, HBL, COL, JAFIRST, NPCOL )
            IF( ( MYROW.EQ.ROW ) .AND. ( MYCOL.EQ.COL ) ) THEN
               IF( ( II.EQ.-1 ) .AND. ( JJ.EQ.-1 ) ) THEN
*
*                 Send the message to everyone
*
                  IF( REV.EQ.0 ) THEN
                     CALL SGEBS2D( CONTXT, 'All', ' ', IROW2-IROW1+1,
     $                             ICOL2-ICOL1+1, A( ( ICOL1-1 )*LDA+
     $                             IROW1 ), LDA )
                  END IF
               END IF
               IF( ( II.EQ.-1 ) .AND. ( JJ.NE.-1 ) ) THEN
*
*                 Send the message to Column MYCOL which better be JJ
*
                  IF( REV.EQ.0 ) THEN
                     CALL SGEBS2D( CONTXT, 'Col', ' ', IROW2-IROW1+1,
     $                             ICOL2-ICOL1+1, A( ( ICOL1-1 )*LDA+
     $                             IROW1 ), LDA )
                  END IF
               END IF
               IF( ( II.NE.-1 ) .AND. ( JJ.EQ.-1 ) ) THEN
*
*                 Send the message to Row MYROW which better be II
*
                  IF( REV.EQ.0 ) THEN
                     CALL SGEBS2D( CONTXT, 'Row', ' ', IROW2-IROW1+1,
     $                             ICOL2-ICOL1+1, A( ( ICOL1-1 )*LDA+
     $                             IROW1 ), LDA )
                  END IF
               END IF
               IF( ( II.NE.-1 ) .AND. ( JJ.NE.-1 ) .AND.
     $             ( ( MYROW.NE.II ) .OR. ( MYCOL.NE.JJ ) ) ) THEN
*
*                 Recv/Send the message to (II,JJ)
*
                  IF( REV.EQ.0 ) THEN
                     CALL SGESD2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
     $                             A( ( ICOL1-1 )*LDA+IROW1 ), LDA, II,
     $                             JJ )
                  ELSE
                     CALL SGERV2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
     $                             B( IDI-I+1, IDJ-I+1 ), LDB, II, JJ )
                  END IF
               END IF
               IF( REV.EQ.0 ) THEN
                  DO 60 JJJ = ICOL1, ICOL2
                     DO 50 III = IROW1, IROW2
                        B( IDI+III-IROW1+1-I, IDJ+JJJ-ICOL1+1-I )
     $                     = A( ( JJJ-1 )*LDA+III )
   50                CONTINUE
   60             CONTINUE
               ELSE
                  DO 80 JJJ = ICOL1, ICOL2
                     DO 70 III = IROW1, IROW2
                        A( ( JJJ-1 )*LDA+III ) = B( IDI+III-IROW1+1-I,
     $                     IDJ+JJJ-ICOL1+1-I )
   70                CONTINUE
   80             CONTINUE
               END IF
            ELSE
               IF( ( II.EQ.-1 ) .AND. ( JJ.EQ.-1 ) ) THEN
                  IF( REV.EQ.0 ) THEN
                     CALL SGEBR2D( CONTXT, 'All', ' ', IROW2-IROW1+1,
     $                             ICOL2-ICOL1+1, B( IDI-I+1, IDJ-I+1 ),
     $                             LDB, ROW, COL )
                  END IF
               END IF
               IF( ( II.EQ.-1 ) .AND. ( JJ.EQ.MYCOL ) ) THEN
                  IF( REV.EQ.0 ) THEN
                     CALL SGEBR2D( CONTXT, 'Col', ' ', IROW2-IROW1+1,
     $                             ICOL2-ICOL1+1, B( IDI-I+1, IDJ-I+1 ),
     $                             LDB, ROW, COL )
                  END IF
               END IF
               IF( ( II.EQ.MYROW ) .AND. ( JJ.EQ.-1 ) ) THEN
                  IF( REV.EQ.0 ) THEN
                     CALL SGEBR2D( CONTXT, 'Row', ' ', IROW2-IROW1+1,
     $                             ICOL2-ICOL1+1, B( IDI-I+1, IDJ-I+1 ),
     $                             LDB, ROW, COL )
                  END IF
               END IF
               IF( ( II.EQ.MYROW ) .AND. ( JJ.EQ.MYCOL ) ) THEN
                  IF( REV.EQ.0 ) THEN
                     CALL SGERV2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
     $                             B( IDI-I+1, IDJ-I+1 ), LDB, ROW,
     $                             COL )
                  ELSE
                     CALL SGESD2D( CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
     $                             B( IDI-I+1, IDJ-I+1 ), LDB, ROW,
     $                             COL )
*                    CALL SGESD2D(CONTXT, IROW2-IROW1+1, ICOL2-ICOL1+1,
*    $                            A((ICOL1-1)*LDA+IROW1),LDA, ROW, COL)
                  END IF
               END IF
            END IF
            IDI = ISTOPI + 1
            ISTOPI = MIN( ISTOPI+HBL, IFIN )
            IF( IDI.LE.IFIN )
     $         GO TO 40
         END IF
         IDJ = ISTOPJ + 1
         ISTOPJ = MIN( ISTOPJ+HBL, IFIN )
         IF( IDJ.LE.IFIN )
     $      GO TO 30
      END IF
      RETURN
*
*     End of PSLACP3
*
      END