File: pslaed3.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (347 lines) | stat: -rw-r--r-- 11,102 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
      SUBROUTINE PSLAED3( ICTXT, K, N, NB, D, DROW, DCOL, RHO, DLAMDA,
     $                    W, Z, U, LDU, BUF, INDX, INDCOL, INDROW,
     $                    INDXR, INDXC, CTOT, NPCOL, INFO )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      INTEGER            DCOL, DROW, ICTXT, INFO, K, LDU, N, NB, NPCOL
      REAL               RHO
*     ..
*     .. Array Arguments ..
      INTEGER            CTOT( 0: NPCOL-1, 4 ), INDCOL( * ),
     $                   INDROW( * ), INDX( * ), INDXC( * ), INDXR( * )
      REAL               BUF( * ), D( * ), DLAMDA( * ), U( LDU, * ),
     $                   W( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAED3 finds the roots of the secular equation, as defined by the
*  values in D, W, and RHO, between 1 and K.  It makes the
*  appropriate calls to SLAED4
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  ICTXT  (global input) INTEGER
*         The BLACS context handle, indicating the global context of
*         the operation on the matrix. The context itself is global.
*
*  K      (output) INTEGER
*         The number of non-deflated eigenvalues, and the order of the
*         related secular equation. 0 <= K <=N.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  NB      (global input) INTEGER
*          The blocking factor used to distribute the columns of the
*          matrix. NB >= 1.
*
*  D      (input/output) REAL array, dimension (N)
*         On entry, D contains the eigenvalues of the two submatrices to
*         be combined.
*         On exit, D contains the trailing (N-K) updated eigenvalues
*         (those which were deflated) sorted into increasing order.
*
*  DROW   (global input) INTEGER
*          The process row over which the first row of the matrix D is
*          distributed. 0 <= DROW < NPROW.
*
*  DCOL   (global input) INTEGER
*          The process column over which the first column of the
*          matrix D is distributed. 0 <= DCOL < NPCOL.
*
*  RHO    (global input/output) REAL
*         On entry, the off-diagonal element associated with the rank-1
*         cut which originally split the two submatrices which are now
*         being recombined.
*         On exit, RHO has been modified to the value required by
*         PSLAED3.
*
*  DLAMDA (global output) REAL array, dimension (N)
*         A copy of the first K eigenvalues which will be used by
*         SLAED4 to form the secular equation.
*
*  W      (global output) REAL array, dimension (N)
*         The first k values of the final deflation-altered z-vector
*         which will be passed to SLAED4.
*
*  Z      (global input) REAL array, dimension (N)
*         On entry, Z contains the updating vector (the last
*         row of the first sub-eigenvector matrix and the first row of
*         the second sub-eigenvector matrix).
*         On exit, the contents of Z have been destroyed by the updating
*         process.
*
*  U     (global output) REAL array
*         global dimension (N, N), local dimension (LDU, NQ).
*         (See PSLAED0 for definition of NQ.)
*         Q  contains the orthonormal eigenvectors of the symmetric
*         tridiagonal matrix.
*
*  LDU    (input) INTEGER
*         The leading dimension of the array U.
*
*  BUF    (workspace) REAL array, dimension 3*N
*
*
*  INDX   (workspace) INTEGER array, dimension (N)
*         The permutation used to sort the contents of DLAMDA into
*         ascending order.
*
*  INDCOL (workspace) INTEGER array, dimension (N)
*
*
*  INDROW (workspace) INTEGER array, dimension (N)
*
*
*  INDXR (workspace) INTEGER array, dimension (N)
*
*
*  INDXC (workspace) INTEGER array, dimension (N)
*
*  CTOT   (workspace) INTEGER array, dimension( NPCOL, 4)
*
*  NPCOL   (global input) INTEGER
*          The total number of columns over which the distributed
*           submatrix is distributed.
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute the ith eigenvalue.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            COL, GI, I, IINFO, IIU, IPD, IU, J, JJU, JU,
     $                   KK, KL, KLC, KLR, MYCOL, MYKL, MYKLR, MYROW,
     $                   NPROW, PDC, PDR, ROW
      REAL               AUX, TEMP
*     ..
*     .. External Functions ..
      INTEGER            INDXG2L
      REAL               SLAMC3, SNRM2
      EXTERNAL           INDXG2L, SLAMC3, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, SCOPY, SGEBR2D, SGEBS2D,
     $                   SGERV2D, SGESD2D, SLAED4
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IINFO = 0
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      ROW = DROW
      COL = DCOL
      DO 20 I = 1, N, NB
         DO 10 J = 0, NB - 1
            INDROW( I+J ) = ROW
            INDCOL( I+J ) = COL
   10    CONTINUE
         ROW = MOD( ROW+1, NPROW )
         COL = MOD( COL+1, NPCOL )
   20 CONTINUE
*
      MYKL = CTOT( MYCOL, 1 ) + CTOT( MYCOL, 2 ) + CTOT( MYCOL, 3 )
      KLR = MYKL / NPROW
      IF( MYROW.EQ.DROW ) THEN
         MYKLR = KLR + MOD( MYKL, NPROW )
      ELSE
         MYKLR = KLR
      END IF
      PDC = 1
      COL = DCOL
   30 CONTINUE
      IF( MYCOL.NE.COL ) THEN
         PDC = PDC + CTOT( COL, 1 ) + CTOT( COL, 2 ) + CTOT( COL, 3 )
         COL = MOD( COL+1, NPCOL )
         GO TO 30
      END IF
      PDR = PDC
      KL = KLR + MOD( MYKL, NPROW )
      ROW = DROW
   40 CONTINUE
      IF( MYROW.NE.ROW ) THEN
         PDR = PDR + KL
         KL = KLR
         ROW = MOD( ROW+1, NPROW )
         GO TO 40
      END IF
*
      DO 50 I = 1, K
         DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
         Z( I ) = ONE
   50 CONTINUE
      IF( MYKLR.GT.0 ) THEN
         KK = PDR
         DO 80 I = 1, MYKLR
            CALL SLAED4( K, KK, DLAMDA, W, BUF, RHO, BUF( K+I ), IINFO )
            IF( IINFO.NE.0 ) THEN
               INFO = KK
            END IF
*
*     ..Compute part of z
*
            DO 60 J = 1, KK - 1
               Z( J ) = Z( J )*( BUF( J ) /
     $                  ( DLAMDA( J )-DLAMDA( KK ) ) )
   60       CONTINUE
            Z( KK ) = Z( KK )*BUF( KK )
            DO 70 J = KK + 1, K
               Z( J ) = Z( J )*( BUF( J ) /
     $                  ( DLAMDA( J )-DLAMDA( KK ) ) )
   70       CONTINUE
            KK = KK + 1
   80    CONTINUE
*
         IF( MYROW.NE.DROW ) THEN
            CALL SCOPY( K, Z, 1, BUF, 1 )
            CALL SGESD2D( ICTXT, K+MYKLR, 1, BUF, K+MYKLR, DROW, MYCOL )
         ELSE
            IPD = 2*K + 1
            CALL SCOPY( MYKLR, BUF( K+1 ), 1, BUF( IPD ), 1 )
            IF( KLR.GT.0 ) THEN
               IPD = MYKLR + IPD
               ROW = MOD( DROW+1, NPROW )
               DO 100 I = 1, NPROW - 1
                  CALL SGERV2D( ICTXT, K+KLR, 1, BUF, K+KLR, ROW,
     $                          MYCOL )
                  CALL SCOPY( KLR, BUF( K+1 ), 1, BUF( IPD ), 1 )
                  DO 90 J = 1, K
                     Z( J ) = Z( J )*BUF( J )
   90             CONTINUE
                  IPD = IPD + KLR
                  ROW = MOD( ROW+1, NPROW )
  100          CONTINUE
            END IF
         END IF
      END IF
*
      IF( MYROW.EQ.DROW ) THEN
         IF( MYCOL.NE.DCOL .AND. MYKL.NE.0 ) THEN
            CALL SCOPY( K, Z, 1, BUF, 1 )
            CALL SCOPY( MYKL, BUF( 2*K+1 ), 1, BUF( K+1 ), 1 )
            CALL SGESD2D( ICTXT, K+MYKL, 1, BUF, K+MYKL, MYROW, DCOL )
         ELSE IF( MYCOL.EQ.DCOL ) THEN
            IPD = 2*K + 1
            COL = DCOL
            KL = MYKL
            DO 120 I = 1, NPCOL - 1
               IPD = IPD + KL
               COL = MOD( COL+1, NPCOL )
               KL = CTOT( COL, 1 ) + CTOT( COL, 2 ) + CTOT( COL, 3 )
               IF( KL.NE.0 ) THEN
                  CALL SGERV2D( ICTXT, K+KL, 1, BUF, K+KL, MYROW, COL )
                  CALL SCOPY( KL, BUF( K+1 ), 1, BUF( IPD ), 1 )
                  DO 110 J = 1, K
                     Z( J ) = Z( J )*BUF( J )
  110             CONTINUE
               END IF
  120       CONTINUE
            DO 130 I = 1, K
               Z( I ) = SIGN( SQRT( -Z( I ) ), W( I ) )
  130       CONTINUE
*
         END IF
      END IF
*
*     Diffusion
*
      IF( MYROW.EQ.DROW .AND. MYCOL.EQ.DCOL ) THEN
         CALL SCOPY( K, Z, 1, BUF, 1 )
         CALL SCOPY( K, BUF( 2*K+1 ), 1, BUF( K+1 ), 1 )
         CALL SGEBS2D( ICTXT, 'All', ' ', 2*K, 1, BUF, 2*K )
      ELSE
         CALL SGEBR2D( ICTXT, 'All', ' ', 2*K, 1, BUF, 2*K, DROW, DCOL )
         CALL SCOPY( K, BUF, 1, Z, 1 )
      END IF
*
*     Copy of D at the good place
*
      KLC = 0
      KLR = 0
      DO 140 I = 1, K
         GI = INDX( I )
         D( GI ) = BUF( K+I )
         COL = INDCOL( GI )
         ROW = INDROW( GI )
         IF( COL.EQ.MYCOL ) THEN
            KLC = KLC + 1
            INDXC( KLC ) = I
         END IF
         IF( ROW.EQ.MYROW ) THEN
            KLR = KLR + 1
            INDXR( KLR ) = I
         END IF
  140 CONTINUE
*
*     Compute eigenvectors of the modified rank-1 modification.
*
      IF( MYKL.NE.0 ) THEN
         DO 180 J = 1, MYKL
            KK = INDXC( J )
            JU = INDX( KK )
            JJU = INDXG2L( JU, NB, J, J, NPCOL )
            CALL SLAED4( K, KK, DLAMDA, W, BUF, RHO, AUX, IINFO )
            IF( IINFO.NE.0 ) THEN
               INFO = KK
            END IF
            IF( K.EQ.1 .OR. K.EQ.2 ) THEN
               DO 150 I = 1, KLR
                  KK = INDXR( I )
                  IU = INDX( KK )
                  IIU = INDXG2L( IU, NB, J, J, NPROW )
                  U( IIU, JJU ) = BUF( KK )
  150          CONTINUE
               GO TO 180
            END IF
*
            DO 160 I = 1, K
               BUF( I ) = Z( I ) / BUF( I )
  160       CONTINUE
            TEMP = SNRM2( K, BUF, 1 )
            DO 170 I = 1, KLR
               KK = INDXR( I )
               IU = INDX( KK )
               IIU = INDXG2L( IU, NB, J, J, NPROW )
               U( IIU, JJU ) = BUF( KK ) / TEMP
  170       CONTINUE
  180    CONTINUE
      END IF
*
  190 CONTINUE
      RETURN
*
*     End of PSLAED3
*
      END