File: pslanhs.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (740 lines) | stat: -rw-r--r-- 25,899 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
      REAL               FUNCTION PSLANHS( NORM, N, A, IA, JA, DESCA,
     $                                     WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            IA, JA, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               A( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLANHS returns the value of the one norm, or the Frobenius norm,
*  or the infinity norm, or the element of largest absolute value of a
*  Hessenberg distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
*  PSLANHS returns the value
*
*     ( max(abs(A(i,j))),  NORM = 'M' or 'm' with IA <= i <= IA+N-1,
*     (                                      and  JA <= j <= JA+N-1,
*     (
*     ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
*     (
*     ( normI( sub( A ) ), NORM = 'I' or 'i'
*     (
*     ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
*  where norm1 denotes the  one norm of a matrix (maximum column sum),
*  normI denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  NORM    (global input) CHARACTER
*          Specifies the value to be returned in PSLANHS as described
*          above.
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on i.e the
*          number of rows and columns of the distributed submatrix
*          sub( A ). When N = 0, PSLANHS is set to zero. N >= 0.
*
*  A       (local input) REAL pointer into the local memory
*          to an array of dimension (LLD_A, LOCc(JA+N-1) ) containing
*          the local pieces of sub( A ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  WORK    (local workspace) REAL array dimension (LWORK)
*          LWORK >=   0 if NORM = 'M' or 'm' (not referenced),
*                   Nq0 if NORM = '1', 'O' or 'o',
*                   Mp0 if NORM = 'I' or 'i',
*                     0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
*          where
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Np0 = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
*          MYCOL, NPROW and NPCOL can be determined by calling the
*          subroutine BLACS_GRIDINFO.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IACOL, IAROW, ICTXT, II, IIA, ICOFF, INXTROW,
     $                   IOFFA, IROFF, J, JB, JJ, JJA, JN, KK, LDA, LL,
     $                   MYCOL, MYROW, NP, NPCOL, NPROW, NQ
      REAL               SCALE, SUM, VALUE
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, INFOG2L, PSTREECOMB,
     $                   SCOMBSSQ, SGEBR2D, SGEBS2D,
     $                   SGAMX2D, SGSUM2D, SLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, ISAMAX, NUMROC
      EXTERNAL           LSAME, ICEIL, ISAMAX, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYROW.EQ.IAROW )
     $   NP = NP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
      LDA = DESCA( LLD_ )
      IOFFA = ( JJA - 1 ) * LDA
*
      IF( N.EQ.0 ) THEN
*
         VALUE = ZERO
*
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
         VALUE = ZERO
*
*        Find max(abs(A(i,j))).
*
         II = IIA
         JJ = JJA
         JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
         JB = JN-JA+1
*
*        Only one process row
*
         IF( NPROW.EQ.1 ) THEN
*
*           Handle first block of columns separately
*
            IF( MYCOL.EQ.IACOL ) THEN
               DO 20 LL = JJ, JJ+JB-1
                  DO 10 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                     VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   10             CONTINUE
                  IOFFA = IOFFA + LDA
   20          CONTINUE
               JJ = JJ + JB
            END IF
*
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 50 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  DO 40 LL = JJ, JJ+JB-1
                     DO 30 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                        VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   30                CONTINUE
                     IOFFA = IOFFA + LDA
   40             CONTINUE
                  JJ = JJ + JB
               END IF
*
               II = II + JB
               IACOL = MOD( IACOL+1, NPCOL )
*
   50       CONTINUE
*
         ELSE
*
*           Handle first block of columns separately
*
            INXTROW = MOD( IAROW+1, NPROW )
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  DO 70 LL = JJ, JJ + JB -1
                     DO 60 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                        VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   60                CONTINUE
                     IOFFA = IOFFA + LDA
   70             CONTINUE
               ELSE
                  DO 90 LL = JJ, JJ+JB-1
                     DO 80 KK = IIA, MIN( II-1, IIA+NP-1 )
                        VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   80                CONTINUE
                     IOFFA = IOFFA + LDA
   90             CONTINUE
                  IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $               VALUE = MAX( VALUE, ABS( A( II+(JJ+JB-2)*LDA ) ) )
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = INXTROW
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 140 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     DO 110 LL = JJ, JJ + JB -1
                        DO 100 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  100                   CONTINUE
                        IOFFA = IOFFA + LDA
  110                CONTINUE
                  ELSE
                     DO 130 LL = JJ, JJ + JB -1
                        DO 120 KK = IIA, MIN( II-1, IIA+NP-1 )
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  120                   CONTINUE
                        IOFFA = IOFFA + LDA
  130                CONTINUE
                     IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $                  VALUE = MAX( VALUE,
     $                               ABS( A( II+(JJ+JB-2)*LDA ) ) )
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = INXTROW
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  140       CONTINUE
*
         END IF
*
*        Gather the intermediate results to process (0,0).
*
         CALL SGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, KK, LL, -1,
     $                 0, 0 )
*
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
         VALUE = ZERO
         II = IIA
         JJ = JJA
         JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
         JB = JN-JA+1
*
*        Only one process row
*
         IF( NPROW.EQ.1 ) THEN
*
*           Handle first block of columns separately
*
            IF( MYCOL.EQ.IACOL ) THEN
               DO 160 LL = JJ, JJ+JB-1
                  SUM = ZERO
                  DO 150 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                     SUM = SUM + ABS( A( IOFFA+KK ) )
  150             CONTINUE
                  IOFFA = IOFFA + LDA
                  WORK( LL-JJA+1 ) = SUM
  160          CONTINUE
               JJ = JJ + JB
            END IF
*
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 190 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  DO 180 LL = JJ, JJ+JB-1
                     SUM = ZERO
                     DO 170 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                        SUM = SUM + ABS( A( IOFFA+KK ) )
  170                CONTINUE
                     IOFFA = IOFFA + LDA
                     WORK( LL-JJA+1 ) = SUM
  180             CONTINUE
                  JJ = JJ + JB
               END IF
*
               II = II + JB
               IACOL = MOD( IACOL+1, NPCOL )
*
  190       CONTINUE
*
         ELSE
*
*           Handle first block of columns separately
*
            INXTROW = MOD( IAROW+1, NPROW )
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  DO 210 LL = JJ, JJ + JB -1
                     SUM = ZERO
                     DO 200 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                        SUM = SUM + ABS( A( IOFFA+KK ) )
  200                CONTINUE
                     IOFFA = IOFFA + LDA
                     WORK( LL-JJA+1 ) = SUM
  210             CONTINUE
               ELSE
                  DO 230 LL = JJ, JJ + JB -1
                     SUM = ZERO
                     DO 220 KK = IIA, MIN( II-1, IIA+NP-1 )
                        SUM = SUM + ABS( A( IOFFA+KK ) )
  220                CONTINUE
                     IOFFA = IOFFA + LDA
                     WORK( LL-JJA+1 ) = SUM
  230             CONTINUE
                  IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $               WORK( JJ+JB-JJA ) = WORK( JJ+JB-JJA ) +
     $                                   ABS( A( II+(JJ+JB-2)*LDA ) )
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = INXTROW
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 280 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     DO 250 LL = JJ, JJ + JB -1
                        SUM = ZERO
                        DO 240 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  240                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  250                CONTINUE
                  ELSE
                     DO 270 LL = JJ, JJ + JB -1
                        SUM = ZERO
                        DO 260 KK = IIA, MIN( II-1, IIA+NP-1 )
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  260                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  270                CONTINUE
                     IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $                  WORK( JJ+JB-JJA ) = WORK( JJ+JB-JJA ) +
     $                                      ABS( A( II+(JJ+JB-2)*LDA ) )
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = INXTROW
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  280       CONTINUE
*
         END IF
*
*        Find sum of global matrix columns and store on row 0 of
*        process grid
*
         CALL SGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK, 1,
     $                 0, MYCOL )
*
*        Find maximum sum of columns for 1-norm
*
         IF( MYROW.EQ.0 ) THEN
            IF( NQ.GT.0 ) THEN
               VALUE = WORK( ISAMAX( NQ, WORK, 1 ) )
            ELSE
               VALUE = ZERO
            END IF
            CALL SGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, KK, LL,
     $                    -1, 0, 0 )
         END IF
*
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
         DO 290 KK = IIA, IIA+NP-1
            WORK( KK ) = ZERO
  290    CONTINUE
*
         II = IIA
         JJ = JJA
         JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
         JB = JN-JA+1
*
*        Only one process row
*
         IF( NPROW.EQ.1 ) THEN
*
*           Handle first block of columns separately
*
            IF( MYCOL.EQ.IACOL ) THEN
               DO 310 LL = JJ, JJ+JB-1
                  DO 300 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                     WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                  ABS( A( IOFFA+KK ) )
  300             CONTINUE
                  IOFFA = IOFFA + LDA
  310          CONTINUE
               JJ = JJ + JB
            END IF
*
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 340 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  DO 330 LL = JJ, JJ+JB-1
                     DO 320 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                        WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                     ABS( A( IOFFA+KK ) )
  320                CONTINUE
                     IOFFA = IOFFA + LDA
  330             CONTINUE
                  JJ = JJ + JB
               END IF
*
               II = II + JB
               IACOL = MOD( IACOL+1, NPCOL )
*
  340       CONTINUE
*
         ELSE
*
*           Handle first block of columns separately
*
            INXTROW = MOD( IAROW+1, NPROW )
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  DO 360 LL = JJ, JJ + JB -1
                     DO 350 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                        WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                     ABS( A( IOFFA+KK ) )
  350                CONTINUE
                     IOFFA = IOFFA + LDA
  360             CONTINUE
               ELSE
                  DO 380 LL = JJ, JJ + JB -1
                     DO 370 KK = IIA, MIN( II-1, IIA+NP-1 )
                        WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                     ABS( A( IOFFA+KK ) )
  370                CONTINUE
                     IOFFA = IOFFA + LDA
  380             CONTINUE
                  IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $               WORK( II-IIA+1 ) = WORK( II-IIA+1 ) +
     $                                  ABS( A( II+(JJ+JB-2)*LDA ) )
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = INXTROW
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 430 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     DO 400 LL = JJ, JJ + JB -1
                        DO 390 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  390                   CONTINUE
                        IOFFA = IOFFA + LDA
  400                CONTINUE
                  ELSE
                     DO 420 LL = JJ, JJ + JB -1
                        DO 410 KK = IIA, MIN( II-1, IIA+NP-1 )
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS(A(IOFFA+KK))
  410                   CONTINUE
                        IOFFA = IOFFA + LDA
  420                CONTINUE
                     IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $                  WORK( II-IIA+1 ) = WORK( II-IIA+1 ) +
     $                                     ABS( A( II+(JJ+JB-2)*LDA ) )
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = INXTROW
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  430       CONTINUE
*
         END IF
*
*        Find sum of global matrix rows and store on column 0 of
*        process grid
*
         CALL SGSUM2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK, MAX( 1, NP ),
     $                 MYROW, 0 )
*
*        Find maximum sum of rows for Infinity-norm
*
         IF( MYCOL.EQ.0 ) THEN
            IF( NP.GT.0 ) THEN
               VALUE = WORK( ISAMAX( NP, WORK, 1 ) )
            ELSE
               VALUE = ZERO
            END IF
            CALL SGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, VALUE, 1, KK,
     $                    LL, -1, 0, 0 )
         END IF
*
      ELSE IF( LSAME( NORM, 'F' ) .OR. LSAME( NORM, 'E' ) ) THEN
*
         SCALE = ZERO
         SUM = ONE
         II = IIA
         JJ = JJA
         JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
         JB = JN-JA+1
*
*        Only one process row
*
         IF( NPROW.EQ.1 ) THEN
*
*           Handle first block of columns separately
*
            IF( MYCOL.EQ.IACOL ) THEN
               DO 440 LL = JJ, JJ+JB-1
                  CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
     $                         A( IIA+IOFFA ), 1, SCALE, SUM )
                  IOFFA = IOFFA + LDA
  440          CONTINUE
               JJ = JJ + JB
            END IF
*
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 460 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  DO 450 LL = JJ, JJ+JB-1
                     CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
     $                            A( IIA+IOFFA ), 1, SCALE, SUM )
                     IOFFA = IOFFA + LDA
  450             CONTINUE
                  JJ = JJ + JB
               END IF
*
               II = II + JB
               IACOL = MOD( IACOL+1, NPCOL )
*
  460       CONTINUE
*
         ELSE
*
*           Handle first block of columns separately
*
            INXTROW = MOD( IAROW+1, NPROW )
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  DO 470 LL = JJ, JJ + JB -1
                     CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
     $                            A( IIA+IOFFA ), 1, SCALE, SUM )
                     IOFFA = IOFFA + LDA
  470             CONTINUE
               ELSE
                  DO 480 LL = JJ, JJ + JB -1
                     CALL SLASSQ( MIN( II-1, IIA+NP-1 )-IIA+1,
     $                            A( IIA+IOFFA ), 1, SCALE, SUM )
                     IOFFA = IOFFA + LDA
  480             CONTINUE
                  IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $               CALL SLASSQ( 1, A( II+(JJ+JB-2)*LDA ), 1,
     $                            SCALE, SUM )
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = INXTROW
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 510 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     DO 490 LL = JJ, JJ + JB -1
                        CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
     $                               A( IIA+IOFFA ), 1, SCALE, SUM )
                        IOFFA = IOFFA + LDA
  490                CONTINUE
                  ELSE
                     DO 500 LL = JJ, JJ + JB -1
                        CALL SLASSQ( MIN( II-1, IIA+NP-1 )-IIA+1,
     $                               A( IIA+IOFFA ), 1, SCALE, SUM )
                        IOFFA = IOFFA + LDA
  500                CONTINUE
                     IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
     $                  CALL SLASSQ( 1, A( II+(JJ+JB-2)*LDA ), 1,
     $                               SCALE, SUM )
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = INXTROW
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  510       CONTINUE
*
         END IF
*
*        Perform the global scaled sum
*
         RWORK( 1 ) = SCALE
         RWORK( 2 ) = SUM
         CALL PSTREECOMB( ICTXT, 'All', 2, RWORK, 0, 0, SCOMBSSQ )
         VALUE = RWORK( 1 ) * SQRT( RWORK( 2 ) )
*
      END IF
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         CALL SGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
      ELSE
         CALL SGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, 0, 0 )
      END IF
*
      PSLANHS = VALUE
*
      RETURN
*
*     End of PSLANHS
*
      END