1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
|
REAL FUNCTION PSLANHS( NORM, N, A, IA, JA, DESCA,
$ WORK )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER IA, JA, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSLANHS returns the value of the one norm, or the Frobenius norm,
* or the infinity norm, or the element of largest absolute value of a
* Hessenberg distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
* PSLANHS returns the value
*
* ( max(abs(A(i,j))), NORM = 'M' or 'm' with IA <= i <= IA+N-1,
* ( and JA <= j <= JA+N-1,
* (
* ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
* (
* ( normI( sub( A ) ), NORM = 'I' or 'i'
* (
* ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* NORM (global input) CHARACTER
* Specifies the value to be returned in PSLANHS as described
* above.
*
* N (global input) INTEGER
* The number of rows and columns to be operated on i.e the
* number of rows and columns of the distributed submatrix
* sub( A ). When N = 0, PSLANHS is set to zero. N >= 0.
*
* A (local input) REAL pointer into the local memory
* to an array of dimension (LLD_A, LOCc(JA+N-1) ) containing
* the local pieces of sub( A ).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WORK (local workspace) REAL array dimension (LWORK)
* LWORK >= 0 if NORM = 'M' or 'm' (not referenced),
* Nq0 if NORM = '1', 'O' or 'o',
* Mp0 if NORM = 'I' or 'i',
* 0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
* where
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* Np0 = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
* MYCOL, NPROW and NPCOL can be determined by calling the
* subroutine BLACS_GRIDINFO.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER IACOL, IAROW, ICTXT, II, IIA, ICOFF, INXTROW,
$ IOFFA, IROFF, J, JB, JJ, JJA, JN, KK, LDA, LL,
$ MYCOL, MYROW, NP, NPCOL, NPROW, NQ
REAL SCALE, SUM, VALUE
* ..
* .. Local Arrays ..
REAL RWORK( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L, PSTREECOMB,
$ SCOMBSSQ, SGEBR2D, SGEBS2D,
$ SGAMX2D, SGSUM2D, SLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, ISAMAX, NUMROC
EXTERNAL LSAME, ICEIL, ISAMAX, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYROW.EQ.IAROW )
$ NP = NP - IROFF
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFF
LDA = DESCA( LLD_ )
IOFFA = ( JJA - 1 ) * LDA
*
IF( N.EQ.0 ) THEN
*
VALUE = ZERO
*
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
VALUE = ZERO
*
* Find max(abs(A(i,j))).
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* Only one process row
*
IF( NPROW.EQ.1 ) THEN
*
* Handle first block of columns separately
*
IF( MYCOL.EQ.IACOL ) THEN
DO 20 LL = JJ, JJ+JB-1
DO 10 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
10 CONTINUE
IOFFA = IOFFA + LDA
20 CONTINUE
JJ = JJ + JB
END IF
*
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 50 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
DO 40 LL = JJ, JJ+JB-1
DO 30 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
30 CONTINUE
IOFFA = IOFFA + LDA
40 CONTINUE
JJ = JJ + JB
END IF
*
II = II + JB
IACOL = MOD( IACOL+1, NPCOL )
*
50 CONTINUE
*
ELSE
*
* Handle first block of columns separately
*
INXTROW = MOD( IAROW+1, NPROW )
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 70 LL = JJ, JJ + JB -1
DO 60 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
60 CONTINUE
IOFFA = IOFFA + LDA
70 CONTINUE
ELSE
DO 90 LL = JJ, JJ+JB-1
DO 80 KK = IIA, MIN( II-1, IIA+NP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
80 CONTINUE
IOFFA = IOFFA + LDA
90 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ VALUE = MAX( VALUE, ABS( A( II+(JJ+JB-2)*LDA ) ) )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 140 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 110 LL = JJ, JJ + JB -1
DO 100 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
100 CONTINUE
IOFFA = IOFFA + LDA
110 CONTINUE
ELSE
DO 130 LL = JJ, JJ + JB -1
DO 120 KK = IIA, MIN( II-1, IIA+NP-1 )
VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
120 CONTINUE
IOFFA = IOFFA + LDA
130 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ VALUE = MAX( VALUE,
$ ABS( A( II+(JJ+JB-2)*LDA ) ) )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
140 CONTINUE
*
END IF
*
* Gather the intermediate results to process (0,0).
*
CALL SGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, KK, LL, -1,
$ 0, 0 )
*
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
VALUE = ZERO
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* Only one process row
*
IF( NPROW.EQ.1 ) THEN
*
* Handle first block of columns separately
*
IF( MYCOL.EQ.IACOL ) THEN
DO 160 LL = JJ, JJ+JB-1
SUM = ZERO
DO 150 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
150 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
160 CONTINUE
JJ = JJ + JB
END IF
*
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 190 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
DO 180 LL = JJ, JJ+JB-1
SUM = ZERO
DO 170 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
170 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
180 CONTINUE
JJ = JJ + JB
END IF
*
II = II + JB
IACOL = MOD( IACOL+1, NPCOL )
*
190 CONTINUE
*
ELSE
*
* Handle first block of columns separately
*
INXTROW = MOD( IAROW+1, NPROW )
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 210 LL = JJ, JJ + JB -1
SUM = ZERO
DO 200 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
200 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
210 CONTINUE
ELSE
DO 230 LL = JJ, JJ + JB -1
SUM = ZERO
DO 220 KK = IIA, MIN( II-1, IIA+NP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
220 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
230 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ WORK( JJ+JB-JJA ) = WORK( JJ+JB-JJA ) +
$ ABS( A( II+(JJ+JB-2)*LDA ) )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 280 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 250 LL = JJ, JJ + JB -1
SUM = ZERO
DO 240 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
240 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
250 CONTINUE
ELSE
DO 270 LL = JJ, JJ + JB -1
SUM = ZERO
DO 260 KK = IIA, MIN( II-1, IIA+NP-1 )
SUM = SUM + ABS( A( IOFFA+KK ) )
260 CONTINUE
IOFFA = IOFFA + LDA
WORK( LL-JJA+1 ) = SUM
270 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ WORK( JJ+JB-JJA ) = WORK( JJ+JB-JJA ) +
$ ABS( A( II+(JJ+JB-2)*LDA ) )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
280 CONTINUE
*
END IF
*
* Find sum of global matrix columns and store on row 0 of
* process grid
*
CALL SGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK, 1,
$ 0, MYCOL )
*
* Find maximum sum of columns for 1-norm
*
IF( MYROW.EQ.0 ) THEN
IF( NQ.GT.0 ) THEN
VALUE = WORK( ISAMAX( NQ, WORK, 1 ) )
ELSE
VALUE = ZERO
END IF
CALL SGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, KK, LL,
$ -1, 0, 0 )
END IF
*
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
DO 290 KK = IIA, IIA+NP-1
WORK( KK ) = ZERO
290 CONTINUE
*
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* Only one process row
*
IF( NPROW.EQ.1 ) THEN
*
* Handle first block of columns separately
*
IF( MYCOL.EQ.IACOL ) THEN
DO 310 LL = JJ, JJ+JB-1
DO 300 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
300 CONTINUE
IOFFA = IOFFA + LDA
310 CONTINUE
JJ = JJ + JB
END IF
*
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 340 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
DO 330 LL = JJ, JJ+JB-1
DO 320 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
320 CONTINUE
IOFFA = IOFFA + LDA
330 CONTINUE
JJ = JJ + JB
END IF
*
II = II + JB
IACOL = MOD( IACOL+1, NPCOL )
*
340 CONTINUE
*
ELSE
*
* Handle first block of columns separately
*
INXTROW = MOD( IAROW+1, NPROW )
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 360 LL = JJ, JJ + JB -1
DO 350 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
350 CONTINUE
IOFFA = IOFFA + LDA
360 CONTINUE
ELSE
DO 380 LL = JJ, JJ + JB -1
DO 370 KK = IIA, MIN( II-1, IIA+NP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
370 CONTINUE
IOFFA = IOFFA + LDA
380 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ WORK( II-IIA+1 ) = WORK( II-IIA+1 ) +
$ ABS( A( II+(JJ+JB-2)*LDA ) )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 430 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 400 LL = JJ, JJ + JB -1
DO 390 KK = IIA, MIN( II+LL-JJ+1, IIA+NP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS( A( IOFFA+KK ) )
390 CONTINUE
IOFFA = IOFFA + LDA
400 CONTINUE
ELSE
DO 420 LL = JJ, JJ + JB -1
DO 410 KK = IIA, MIN( II-1, IIA+NP-1 )
WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
$ ABS(A(IOFFA+KK))
410 CONTINUE
IOFFA = IOFFA + LDA
420 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ WORK( II-IIA+1 ) = WORK( II-IIA+1 ) +
$ ABS( A( II+(JJ+JB-2)*LDA ) )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
430 CONTINUE
*
END IF
*
* Find sum of global matrix rows and store on column 0 of
* process grid
*
CALL SGSUM2D( ICTXT, 'Rowwise', ' ', NP, 1, WORK, MAX( 1, NP ),
$ MYROW, 0 )
*
* Find maximum sum of rows for Infinity-norm
*
IF( MYCOL.EQ.0 ) THEN
IF( NP.GT.0 ) THEN
VALUE = WORK( ISAMAX( NP, WORK, 1 ) )
ELSE
VALUE = ZERO
END IF
CALL SGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, VALUE, 1, KK,
$ LL, -1, 0, 0 )
END IF
*
ELSE IF( LSAME( NORM, 'F' ) .OR. LSAME( NORM, 'E' ) ) THEN
*
SCALE = ZERO
SUM = ONE
II = IIA
JJ = JJA
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
JB = JN-JA+1
*
* Only one process row
*
IF( NPROW.EQ.1 ) THEN
*
* Handle first block of columns separately
*
IF( MYCOL.EQ.IACOL ) THEN
DO 440 LL = JJ, JJ+JB-1
CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1, SCALE, SUM )
IOFFA = IOFFA + LDA
440 CONTINUE
JJ = JJ + JB
END IF
*
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 460 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
DO 450 LL = JJ, JJ+JB-1
CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1, SCALE, SUM )
IOFFA = IOFFA + LDA
450 CONTINUE
JJ = JJ + JB
END IF
*
II = II + JB
IACOL = MOD( IACOL+1, NPCOL )
*
460 CONTINUE
*
ELSE
*
* Handle first block of columns separately
*
INXTROW = MOD( IAROW+1, NPROW )
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 470 LL = JJ, JJ + JB -1
CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1, SCALE, SUM )
IOFFA = IOFFA + LDA
470 CONTINUE
ELSE
DO 480 LL = JJ, JJ + JB -1
CALL SLASSQ( MIN( II-1, IIA+NP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1, SCALE, SUM )
IOFFA = IOFFA + LDA
480 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ CALL SLASSQ( 1, A( II+(JJ+JB-2)*LDA ), 1,
$ SCALE, SUM )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 510 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
DO 490 LL = JJ, JJ + JB -1
CALL SLASSQ( MIN( II+LL-JJ+1, IIA+NP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1, SCALE, SUM )
IOFFA = IOFFA + LDA
490 CONTINUE
ELSE
DO 500 LL = JJ, JJ + JB -1
CALL SLASSQ( MIN( II-1, IIA+NP-1 )-IIA+1,
$ A( IIA+IOFFA ), 1, SCALE, SUM )
IOFFA = IOFFA + LDA
500 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+NP-1 )
$ CALL SLASSQ( 1, A( II+(JJ+JB-2)*LDA ), 1,
$ SCALE, SUM )
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.IAROW )
$ II = II + JB
IAROW = INXTROW
IAROW = MOD( IAROW+1, NPROW )
IACOL = MOD( IACOL+1, NPCOL )
*
510 CONTINUE
*
END IF
*
* Perform the global scaled sum
*
RWORK( 1 ) = SCALE
RWORK( 2 ) = SUM
CALL PSTREECOMB( ICTXT, 'All', 2, RWORK, 0, 0, SCOMBSSQ )
VALUE = RWORK( 1 ) * SQRT( RWORK( 2 ) )
*
END IF
*
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
CALL SGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
ELSE
CALL SGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, 0, 0 )
END IF
*
PSLANHS = VALUE
*
RETURN
*
* End of PSLANHS
*
END
|