File: pslapiv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (356 lines) | stat: -rw-r--r-- 14,241 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
      SUBROUTINE PSLAPIV( DIREC, ROWCOL, PIVROC, M, N, A, IA, JA,
     $                    DESCA, IPIV, IP, JP, DESCIP, IWORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*     .. Scalar Arguments ..
      CHARACTER*1        DIREC, PIVROC, ROWCOL
      INTEGER            IA, IP, JA, JP, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCIP( * ), IPIV( * ), IWORK( * )
      REAL               A( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAPIV applies either P (permutation matrix indicated by IPIV)
*  or inv( P ) to a general M-by-N distributed matrix
*  sub( A ) = A(IA:IA+M-1,JA:JA+N-1), resulting in row or column
*  pivoting. The pivot vector may be distributed across a process row
*  or a column. The pivot vector should be aligned with the distributed
*  matrix A. This routine will transpose the pivot vector if necessary.
*  For example if the row pivots should be applied to the columns of
*  sub( A ), pass ROWCOL='C' and PIVROC='C'.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Restrictions
*  ============
*
*  IPIV must always be a distributed vector (not a matrix).  Thus:
*  IF( ROWPIV .EQ. 'C' ) THEN
*     JP must be 1
*  ELSE
*     IP must be 1
*  END IF
*
*  The following restrictions apply when IPIV must be transposed:
*  IF( ROWPIV.EQ.'C' .AND. PIVROC.EQ.'C') THEN
*      DESCIP(MB_) must equal DESCA(NB_)
*  ELSE IF( ROWPIV.EQ.'R" .AND. PIVROC.EQ.'R') THEN
*      DESCIP(NB_) must equal DESCA(MB_)
*  END IF
*
*  Arguments
*  =========
*
*  DIREC   (global input) CHARACTER*1
*          Specifies in which order the permutation is applied:
*            = 'F' (Forward) Applies pivots Forward from top of matrix.
*                  Computes P*sub( A ).
*            = 'B' (Backward) Applies pivots Backward from bottom of
*                  matrix. Computes inv( P )*sub( A ).
*
*  ROWCOL  (global input) CHARACTER*1
*          Specifies if the rows or columns are to be permuted:
*             = 'R' Rows will be permuted,
*             = 'C' Columns will be permuted.
*
*  PIVROC  (global input) CHARACTER*1
*          Specifies whether IPIV is distributed over a process row
*          or column:
*          = 'R' IPIV distributed over a process row
*          = 'C' IPIV distributed over a process column
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of
*          rows of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) REAL pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          distributed submatrix sub( A ) to which the row or column
*          interchanges will be applied. On exit, the local pieces
*          of the permuted distributed submatrix.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local input) INTEGER array, dimension (LIPIV) where LIPIV is
*          when ROWCOL='R' or 'r':
*             >= LOCr( IA+M-1 ) + MB_A      if PIVROC='C' or 'c',
*             >= LOCc( M + MOD(JP-1,NB_P) ) if PIVROC='R' or 'r', and,
*          when ROWCOL='C' or 'c':
*             >= LOCr( N + MOD(IP-1,MB_P) ) if PIVROC='C' or 'c',
*             >= LOCc( JA+N-1 ) + NB_A      if PIVROC='R' or 'r'.
*          This array contains the pivoting information. IPIV(i) is the
*          global row (column), local row (column) i was swapped with.
*          When ROWCOL='R' or 'r' and PIVROC='C' or 'c', or ROWCOL='C'
*          or 'c' and PIVROC='R' or 'r', the last piece of this array of
*          size MB_A (resp. NB_A) is used as workspace. In those cases,
*          this array is tied to the distributed matrix A.
*
*  IP      (global input) INTEGER
*          The row index in the global array P indicating the first
*          row of sub( P ).
*
*  JP      (global input) INTEGER
*          The column index in the global array P indicating the
*          first column of sub( P ).
*
*  DESCIP  (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed vector IPIV.
*
*  IWORK   (local workspace) INTEGER array, dimension (LDW)
*          where LDW is equal to the workspace necessary for
*          transposition, and the storage of the tranposed IPIV:
*
*          Let LCM be the least common multiple of NPROW and NPCOL.
*          IF( ROWCOL.EQ.'R' .AND. PIVROC.EQ.'R' ) THEN
*             IF( NPROW.EQ.NPCOL ) THEN
*                LDW = LOCr( N_P + MOD(JP-1, NB_P) ) + NB_P
*             ELSE
*                LDW = LOCr( N_P + MOD(JP-1, NB_P) ) +
*                      NB_P * CEIL( CEIL(LOCc(N_P)/NB_P) / (LCM/NPCOL) )
*             END IF
*          ELSE IF( ROWCOL.EQ.'C' .AND. PIVROC.EQ.'C' ) THEN
*             IF( NPROW.EQ.NPCOL ) THEN
*                LDW = LOCc( M_P + MOD(IP-1, MB_P) ) + MB_P
*             ELSE
*                LDW = LOCc( M_P + MOD(IP-1, MB_P) ) +
*                      MB_P * CEIL( CEIL(LOCr(M_P)/MB_P) / (LCM/NPROW) )
*             END IF
*          ELSE
*             IWORK is not referenced.
*          END IF
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ROWPVT
      INTEGER            I, ICTXT, ICURCOL, ICURROW, IIP, ITMP, IPT,
     $                   JJP, JPT, MYCOL, MYROW, NPCOL, NPROW
*     ..
*     .. Local Arrays ..
      INTEGER            DESCPT( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, IGEBR2D, IGEBS2D,
     $                   INFOG2L, PICOL2ROW, PIROW2COL, PSLAPV2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC, INDXG2P
      EXTERNAL           LSAME, NUMROC, INDXG2P
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      ROWPVT = LSAME( ROWCOL, 'R' )
*
*     If we're pivoting the rows of sub( A )
*
      IF( ROWPVT ) THEN
         IF( M.LE.1 .OR. N.LT.1 )
     $      RETURN
*
*        If the pivot vector is already distributed correctly
*
         IF( LSAME( PIVROC, 'C' ) ) THEN
            CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IPIV,
     $                    IP, JP, DESCIP )
*
*        Otherwise, we must redistribute IPIV to match PSLAPV2
*
         ELSE
*
*           Take IPIV distributed over row 0, and store it in
*           iwork, distributed over column 0
*
            IPT = MOD( JP-1, DESCA(MB_) )
            DESCPT(M_) = M + IPT + NPROW*DESCA(MB_)
            DESCPT(N_) = 1
            DESCPT(MB_) = DESCA(MB_)
            DESCPT(NB_) = 1
            DESCPT(RSRC_) = INDXG2P( IA, DESCA(MB_), IA, DESCA(RSRC_),
     $                               NPROW )
            DESCPT(CSRC_) = MYCOL
            DESCPT(CTXT_) = ICTXT
            DESCPT(LLD_) = NUMROC( DESCPT(M_), DESCPT(MB_), MYROW,
     $                             DESCPT(RSRC_), NPROW )
            ITMP = NUMROC( DESCIP(N_), DESCIP(NB_), MYCOL,
     $                     DESCIP(CSRC_), NPCOL )
            CALL INFOG2L( IP, JP-IPT, DESCIP, NPROW, NPCOL, MYROW,
     $                    MYCOL, IIP, JJP, ICURROW, ICURCOL )
            CALL PIROW2COL( ICTXT, M+IPT, 1, DESCIP(NB_), IPIV(JJP),
     $                      ITMP, IWORK, DESCPT(LLD_), 0, ICURCOL,
     $                      DESCPT(RSRC_),
     $                      MYCOL, IWORK(DESCPT(LLD_)-DESCPT(MB_)+1) )
*
*           Send column-distributed pivots to all columns
*
            ITMP = DESCPT(LLD_) - DESCPT(MB_)
            IF( MYCOL.EQ.0 ) THEN
               CALL IGEBS2D( ICTXT, 'Row', ' ', ITMP, 1, IWORK, ITMP )
            ELSE
               CALL IGEBR2D( ICTXT, 'Row', ' ', ITMP, 1, IWORK, ITMP,
     $                       MYROW, 0 )
            END IF
*
*           Adjust pivots so they are relative to the start of IWORK,
*           not IPIV
*
            IPT = IPT + 1
            DO 10 I = 1, ITMP
               IWORK(I) = IWORK(I) - JP + IPT
   10       CONTINUE
            CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IWORK,
     $                    IPT, 1, DESCPT )
         END IF
*
*     Otherwise, we're pivoting the columns of sub( A )
*
      ELSE
         IF( M.LT.1 .OR. N.LE.1 )
     $      RETURN
*
*        If the pivot vector is already distributed correctly
*
         IF( LSAME( PIVROC, 'R' ) ) THEN
            CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IPIV,
     $                    IP, JP, DESCIP )
*
*        Otherwise, we must redistribute IPIV to match PSLAPV2
*
         ELSE
*
*           Take IPIV distributed over column 0, and store it in
*           iwork, distributed over row 0
*
            JPT = MOD( IP-1, DESCA(NB_) )
            DESCPT(M_) = 1
            DESCPT(N_) = N + JPT + NPCOL*DESCA(NB_)
            DESCPT(MB_) = 1
            DESCPT(NB_) = DESCA(NB_)
            DESCPT(RSRC_) = MYROW
            DESCPT(CSRC_) = INDXG2P( JA, DESCA(NB_), JA, DESCA(CSRC_),
     $                               NPCOL )
            DESCPT(CTXT_) = ICTXT
            DESCPT(LLD_) = 1
            CALL INFOG2L( IP-JPT, JP, DESCIP, NPROW, NPCOL, MYROW,
     $                    MYCOL, IIP, JJP, ICURROW, ICURCOL )
            ITMP = NUMROC( N+JPT, DESCPT(NB_), MYCOL, DESCPT(CSRC_),
     $                     NPCOL )
            CALL PICOL2ROW( ICTXT, N+JPT, 1, DESCIP(MB_), IPIV(IIP),
     $                      DESCIP(LLD_), IWORK, MAX(1, ITMP), ICURROW,
     $                      0, 0, DESCPT(CSRC_), IWORK(ITMP+1) )
*
*           Send row-distributed pivots to all rows
*
            IF( MYROW.EQ.0 ) THEN
               CALL IGEBS2D( ICTXT, 'Column', ' ', ITMP, 1, IWORK,
     $                       ITMP )
            ELSE
               CALL IGEBR2D( ICTXT, 'Column', ' ', ITMP, 1, IWORK,
     $                       ITMP, 0, MYCOL )
            END IF
*
*           Adjust pivots so they are relative to the start of IWORK,
*           not IPIV
*
            JPT = JPT + 1
            DO 20 I = 1, ITMP
               IWORK(I) = IWORK(I) - IP + JPT
   20       CONTINUE
            CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IWORK,
     $                    1, JPT, DESCPT )
         END IF
      END IF
*
      RETURN
*
*     End of PSLAPIV
*
      END