1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
SUBROUTINE PSLAPIV( DIREC, ROWCOL, PIVROC, M, N, A, IA, JA,
$ DESCA, IPIV, IP, JP, DESCIP, IWORK )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
CHARACTER*1 DIREC, PIVROC, ROWCOL
INTEGER IA, IP, JA, JP, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCIP( * ), IPIV( * ), IWORK( * )
REAL A( * )
* ..
*
* Purpose
* =======
*
* PSLAPIV applies either P (permutation matrix indicated by IPIV)
* or inv( P ) to a general M-by-N distributed matrix
* sub( A ) = A(IA:IA+M-1,JA:JA+N-1), resulting in row or column
* pivoting. The pivot vector may be distributed across a process row
* or a column. The pivot vector should be aligned with the distributed
* matrix A. This routine will transpose the pivot vector if necessary.
* For example if the row pivots should be applied to the columns of
* sub( A ), pass ROWCOL='C' and PIVROC='C'.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Restrictions
* ============
*
* IPIV must always be a distributed vector (not a matrix). Thus:
* IF( ROWPIV .EQ. 'C' ) THEN
* JP must be 1
* ELSE
* IP must be 1
* END IF
*
* The following restrictions apply when IPIV must be transposed:
* IF( ROWPIV.EQ.'C' .AND. PIVROC.EQ.'C') THEN
* DESCIP(MB_) must equal DESCA(NB_)
* ELSE IF( ROWPIV.EQ.'R" .AND. PIVROC.EQ.'R') THEN
* DESCIP(NB_) must equal DESCA(MB_)
* END IF
*
* Arguments
* =========
*
* DIREC (global input) CHARACTER*1
* Specifies in which order the permutation is applied:
* = 'F' (Forward) Applies pivots Forward from top of matrix.
* Computes P*sub( A ).
* = 'B' (Backward) Applies pivots Backward from bottom of
* matrix. Computes inv( P )*sub( A ).
*
* ROWCOL (global input) CHARACTER*1
* Specifies if the rows or columns are to be permuted:
* = 'R' Rows will be permuted,
* = 'C' Columns will be permuted.
*
* PIVROC (global input) CHARACTER*1
* Specifies whether IPIV is distributed over a process row
* or column:
* = 'R' IPIV distributed over a process row
* = 'C' IPIV distributed over a process column
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of
* rows of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* distributed submatrix sub( A ) to which the row or column
* interchanges will be applied. On exit, the local pieces
* of the permuted distributed submatrix.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* IPIV (local input) INTEGER array, dimension (LIPIV) where LIPIV is
* when ROWCOL='R' or 'r':
* >= LOCr( IA+M-1 ) + MB_A if PIVROC='C' or 'c',
* >= LOCc( M + MOD(JP-1,NB_P) ) if PIVROC='R' or 'r', and,
* when ROWCOL='C' or 'c':
* >= LOCr( N + MOD(IP-1,MB_P) ) if PIVROC='C' or 'c',
* >= LOCc( JA+N-1 ) + NB_A if PIVROC='R' or 'r'.
* This array contains the pivoting information. IPIV(i) is the
* global row (column), local row (column) i was swapped with.
* When ROWCOL='R' or 'r' and PIVROC='C' or 'c', or ROWCOL='C'
* or 'c' and PIVROC='R' or 'r', the last piece of this array of
* size MB_A (resp. NB_A) is used as workspace. In those cases,
* this array is tied to the distributed matrix A.
*
* IP (global input) INTEGER
* The row index in the global array P indicating the first
* row of sub( P ).
*
* JP (global input) INTEGER
* The column index in the global array P indicating the
* first column of sub( P ).
*
* DESCIP (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed vector IPIV.
*
* IWORK (local workspace) INTEGER array, dimension (LDW)
* where LDW is equal to the workspace necessary for
* transposition, and the storage of the tranposed IPIV:
*
* Let LCM be the least common multiple of NPROW and NPCOL.
* IF( ROWCOL.EQ.'R' .AND. PIVROC.EQ.'R' ) THEN
* IF( NPROW.EQ.NPCOL ) THEN
* LDW = LOCr( N_P + MOD(JP-1, NB_P) ) + NB_P
* ELSE
* LDW = LOCr( N_P + MOD(JP-1, NB_P) ) +
* NB_P * CEIL( CEIL(LOCc(N_P)/NB_P) / (LCM/NPCOL) )
* END IF
* ELSE IF( ROWCOL.EQ.'C' .AND. PIVROC.EQ.'C' ) THEN
* IF( NPROW.EQ.NPCOL ) THEN
* LDW = LOCc( M_P + MOD(IP-1, MB_P) ) + MB_P
* ELSE
* LDW = LOCc( M_P + MOD(IP-1, MB_P) ) +
* MB_P * CEIL( CEIL(LOCr(M_P)/MB_P) / (LCM/NPROW) )
* END IF
* ELSE
* IWORK is not referenced.
* END IF
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
LOGICAL ROWPVT
INTEGER I, ICTXT, ICURCOL, ICURROW, IIP, ITMP, IPT,
$ JJP, JPT, MYCOL, MYROW, NPCOL, NPROW
* ..
* .. Local Arrays ..
INTEGER DESCPT( DLEN_ )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, IGEBR2D, IGEBS2D,
$ INFOG2L, PICOL2ROW, PIROW2COL, PSLAPV2
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC, INDXG2P
EXTERNAL LSAME, NUMROC, INDXG2P
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
ROWPVT = LSAME( ROWCOL, 'R' )
*
* If we're pivoting the rows of sub( A )
*
IF( ROWPVT ) THEN
IF( M.LE.1 .OR. N.LT.1 )
$ RETURN
*
* If the pivot vector is already distributed correctly
*
IF( LSAME( PIVROC, 'C' ) ) THEN
CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IPIV,
$ IP, JP, DESCIP )
*
* Otherwise, we must redistribute IPIV to match PSLAPV2
*
ELSE
*
* Take IPIV distributed over row 0, and store it in
* iwork, distributed over column 0
*
IPT = MOD( JP-1, DESCA(MB_) )
DESCPT(M_) = M + IPT + NPROW*DESCA(MB_)
DESCPT(N_) = 1
DESCPT(MB_) = DESCA(MB_)
DESCPT(NB_) = 1
DESCPT(RSRC_) = INDXG2P( IA, DESCA(MB_), IA, DESCA(RSRC_),
$ NPROW )
DESCPT(CSRC_) = MYCOL
DESCPT(CTXT_) = ICTXT
DESCPT(LLD_) = NUMROC( DESCPT(M_), DESCPT(MB_), MYROW,
$ DESCPT(RSRC_), NPROW )
ITMP = NUMROC( DESCIP(N_), DESCIP(NB_), MYCOL,
$ DESCIP(CSRC_), NPCOL )
CALL INFOG2L( IP, JP-IPT, DESCIP, NPROW, NPCOL, MYROW,
$ MYCOL, IIP, JJP, ICURROW, ICURCOL )
CALL PIROW2COL( ICTXT, M+IPT, 1, DESCIP(NB_), IPIV(JJP),
$ ITMP, IWORK, DESCPT(LLD_), 0, ICURCOL,
$ DESCPT(RSRC_),
$ MYCOL, IWORK(DESCPT(LLD_)-DESCPT(MB_)+1) )
*
* Send column-distributed pivots to all columns
*
ITMP = DESCPT(LLD_) - DESCPT(MB_)
IF( MYCOL.EQ.0 ) THEN
CALL IGEBS2D( ICTXT, 'Row', ' ', ITMP, 1, IWORK, ITMP )
ELSE
CALL IGEBR2D( ICTXT, 'Row', ' ', ITMP, 1, IWORK, ITMP,
$ MYROW, 0 )
END IF
*
* Adjust pivots so they are relative to the start of IWORK,
* not IPIV
*
IPT = IPT + 1
DO 10 I = 1, ITMP
IWORK(I) = IWORK(I) - JP + IPT
10 CONTINUE
CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IWORK,
$ IPT, 1, DESCPT )
END IF
*
* Otherwise, we're pivoting the columns of sub( A )
*
ELSE
IF( M.LT.1 .OR. N.LE.1 )
$ RETURN
*
* If the pivot vector is already distributed correctly
*
IF( LSAME( PIVROC, 'R' ) ) THEN
CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IPIV,
$ IP, JP, DESCIP )
*
* Otherwise, we must redistribute IPIV to match PSLAPV2
*
ELSE
*
* Take IPIV distributed over column 0, and store it in
* iwork, distributed over row 0
*
JPT = MOD( IP-1, DESCA(NB_) )
DESCPT(M_) = 1
DESCPT(N_) = N + JPT + NPCOL*DESCA(NB_)
DESCPT(MB_) = 1
DESCPT(NB_) = DESCA(NB_)
DESCPT(RSRC_) = MYROW
DESCPT(CSRC_) = INDXG2P( JA, DESCA(NB_), JA, DESCA(CSRC_),
$ NPCOL )
DESCPT(CTXT_) = ICTXT
DESCPT(LLD_) = 1
CALL INFOG2L( IP-JPT, JP, DESCIP, NPROW, NPCOL, MYROW,
$ MYCOL, IIP, JJP, ICURROW, ICURCOL )
ITMP = NUMROC( N+JPT, DESCPT(NB_), MYCOL, DESCPT(CSRC_),
$ NPCOL )
CALL PICOL2ROW( ICTXT, N+JPT, 1, DESCIP(MB_), IPIV(IIP),
$ DESCIP(LLD_), IWORK, MAX(1, ITMP), ICURROW,
$ 0, 0, DESCPT(CSRC_), IWORK(ITMP+1) )
*
* Send row-distributed pivots to all rows
*
IF( MYROW.EQ.0 ) THEN
CALL IGEBS2D( ICTXT, 'Column', ' ', ITMP, 1, IWORK,
$ ITMP )
ELSE
CALL IGEBR2D( ICTXT, 'Column', ' ', ITMP, 1, IWORK,
$ ITMP, 0, MYCOL )
END IF
*
* Adjust pivots so they are relative to the start of IWORK,
* not IPIV
*
JPT = JPT + 1
DO 20 I = 1, ITMP
IWORK(I) = IWORK(I) - IP + JPT
20 CONTINUE
CALL PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IWORK,
$ 1, JPT, DESCPT )
END IF
END IF
*
RETURN
*
* End of PSLAPIV
*
END
|