File: pslapv2.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (413 lines) | stat: -rw-r--r-- 15,829 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      SUBROUTINE PSLAPV2( DIREC, ROWCOL, M, N, A, IA, JA, DESCA, IPIV,
     $                    IP, JP, DESCIP )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          DIREC, ROWCOL
      INTEGER            IA, IP, JA, JP, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCIP( * ), IPIV( * )
      REAL               A( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAPV2 applies either P (permutation matrix indicated by IPIV)
*  or inv( P ) to a M-by-N distributed matrix sub( A ) denoting
*  A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting.  The
*  pivot vector should be aligned with the distributed matrix A.  For
*  pivoting the rows of sub( A ), IPIV should be distributed along a
*  process column and replicated over all process rows.  Similarly,
*  IPIV should be distributed along a process row and replicated over
*  all process columns for column pivoting.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  DIREC   (global input) CHARACTER
*          Specifies in which order the permutation is applied:
*            = 'F' (Forward) Applies pivots Forward from top of matrix.
*                  Computes P * sub( A );
*            = 'B' (Backward) Applies pivots Backward from bottom of
*                  matrix. Computes inv( P ) * sub( A ).
*
*  ROWCOL  (global input) CHARACTER
*          Specifies if the rows or columns are to be permuted:
*            = 'R' Rows will be permuted,
*            = 'C' Columns will be permuted.
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) REAL pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, this local array contains the local pieces of the
*          distributed matrix sub( A ) to which the row or columns
*          interchanges will be applied. On exit, this array contains
*          the local pieces of the permuted distributed matrix.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (input) INTEGER array, dimension >= LOCr(M_A)+MB_A if
*          ROWCOL = 'R', LOCc(N_A)+NB_A otherwise. It contains
*          the pivoting information. IPIV(i) is the global row (column),
*          local row (column) i was swapped with.  The last piece of the
*          array of size MB_A (resp. NB_A) is used as workspace. IPIV is
*          tied to the distributed matrix A.
*
*  IP      (global input) INTEGER
*          IPIV's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JP      (global input) INTEGER
*          IPIV's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCIP  (global and local input) INTEGER array of dimension 8
*          The array descriptor for the distributed matrix IPIV.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      LOGICAL            FORWRD, ROWPVT
      INTEGER            I, IB, ICTXT, ICURCOL, ICURROW, IIP, IP1, ITMP,
     $                   IPVWRK, J, JB, JJP, JP1, K, MA, MBA, MYCOL,
     $                   MYROW, NBA, NPCOL, NPROW
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, IGEBS2D, IGEBR2D, INFOG2L,
     $                   PSSWAP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, NUMROC
      EXTERNAL           ICEIL, LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, MOD
*     ..
*     .. Executable Statements ..
*
      ROWPVT = LSAME( ROWCOL, 'R' )
      IF( ROWPVT ) THEN
         IF( M.LE.1 .OR. N.LT.1 )
     $      RETURN
      ELSE
         IF( M.LT.1 .OR. N.LE.1 )
     $      RETURN
      END IF
      FORWRD = LSAME( DIREC, 'F' )
*
*
*     Get grid and matrix parameters
*
      MA    = DESCA( M_ )
      MBA   = DESCA( MB_ )
      NBA   = DESCA( NB_ )
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     If I'm applying pivots from beginning to end (e.g., repeating
*     pivoting done earlier).  Thus this section computes P * sub( A ).
*
      IF( FORWRD ) THEN
         CALL INFOG2L( IP, JP, DESCIP, NPROW, NPCOL, MYROW, MYCOL,
     $                 IIP, JJP, ICURROW, ICURCOL )
*
*        If I'm pivoting the rows of sub( A )
*
         IF( ROWPVT ) THEN
            IPVWRK = NUMROC( DESCIP( M_ ), DESCIP( MB_ ), MYROW,
     $                       DESCIP( RSRC_ ), NPROW ) + 1 -
     $                       DESCIP( MB_ )
*
*          Loop over rows of sub( A )
*
            I = IA
            IB = MIN( M, ICEIL( IA, MBA ) * MBA - IA + 1 )
   10       CONTINUE
*
*              Find local pointer into IPIV, and broadcast this block's
*              pivot information to everyone in process column
*
               IF( MYROW.EQ.ICURROW ) THEN
                  CALL IGEBS2D( ICTXT, 'Columnwise', ' ', IB, 1,
     $                          IPIV( IIP ), IB )
                  ITMP = IIP
                  IIP = IIP + IB
               ELSE
                  ITMP = IPVWRK
                  CALL IGEBR2D( ICTXT, 'Columnwise', ' ', IB, 1,
     $                          IPIV( ITMP ), IB, ICURROW, MYCOL )
               END IF
*
*              Pivot the block of rows
*
               DO 20 K = I, I+IB-1
                  IP1 = IPIV( ITMP ) - IP + IA
                  IF( IP1.NE.K )
     $               CALL PSSWAP( N, A, K, JA, DESCA, MA, A, IP1, JA,
     $                            DESCA, MA )
                  ITMP = ITMP + 1
   20          CONTINUE
*
*              Go on to next row of processes, increment row counter,
*              and figure number of rows to pivot next
*
               ICURROW = MOD( ICURROW+1, NPROW )
               I = I + IB
               IB = MIN( MBA, M-I+IA )
            IF( IB .GT. 0 ) GOTO 10
*
*        If I am pivoting the columns of sub( A )
*
         ELSE
            IPVWRK = NUMROC( DESCIP( N_ ), DESCIP( NB_ ), MYCOL,
     $                       DESCIP( CSRC_ ), NPCOL ) + 1 -
     $                       DESCIP( NB_ )
*
*          Loop over columns of sub( A )
*
            J = JA
            JB = MIN( N, ICEIL( JA, NBA ) * NBA - JA + 1 )
   30       CONTINUE
*
*              Find local pointer into IPIV, and broadcast this block's
*              pivot information to everyone in process row
*
               IF( MYCOL.EQ.ICURCOL ) THEN
                  CALL IGEBS2D( ICTXT, 'Rowwise', ' ', JB, 1,
     $                          IPIV( JJP ), JB )
                  ITMP = JJP
                  JJP = JJP + JB
               ELSE
                  ITMP = IPVWRK
                  CALL IGEBR2D( ICTXT, 'Rowwise', ' ', JB, 1,
     $                          IPIV( ITMP ), JB, MYROW, ICURCOL )
               END IF
*
*              Pivot the block of columns
*
               DO 40 K = J, J+JB-1
                  JP1 = IPIV( ITMP ) - JP + JA
                  IF( JP1.NE.K )
     $               CALL PSSWAP( M, A, IA, K, DESCA, 1, A, IA, JP1,
     $                            DESCA, 1 )
                  ITMP = ITMP + 1
   40          CONTINUE
*
*              Go on to next column of processes, increment column
*              counter, and figure number of columns to pivot next
*
               ICURCOL = MOD( ICURCOL+1, NPCOL )
               J = J + JB
               JB = MIN( NBA, N-J+JA )
            IF( JB .GT. 0 ) GOTO 30
         END IF
*
*     If I want to apply pivots in reverse order, i.e. reversing
*     pivoting done earlier.  Thus this section computes
*     inv( P ) * sub( A ).
*
      ELSE
*
*        If I'm pivoting the rows of sub( A )
*
         IF( ROWPVT ) THEN
            CALL INFOG2L( IP+M-1, JP, DESCIP, NPROW, NPCOL, MYROW,
     $                    MYCOL, IIP, JJP, ICURROW, ICURCOL )
*
            IPVWRK = NUMROC( DESCIP( M_ ), DESCIP( MB_ ), MYROW,
     $                       DESCIP( RSRC_ ), NPROW ) + 1 -
     $                       DESCIP( MB_ )
*
*           If I'm not in the current process row, my IIP points out
*           past end of pivot vector (since I don't own a piece of the
*           last row). Adjust IIP so it points at last pivot entry.
*
            IF( MYROW.NE.ICURROW ) IIP = IIP - 1
*
*           Loop over rows in reverse order, starting at last row
*
            I = IA + M - 1
            IB = MOD( I, MBA )
            IF( IB .EQ. 0 ) IB = MBA
            IB = MIN( IB, M )
   50       CONTINUE
*
*              Find local pointer into IPIV, and broadcast this block's
*              pivot information to everyone in process column
*
               IF( MYROW.EQ.ICURROW ) THEN
                  ITMP = IIP
                  IIP = IIP - IB
                  CALL IGEBS2D( ICTXT, 'Columnwise', ' ', IB, 1,
     $                          IPIV( IIP+1 ), IB )
               ELSE
                  CALL IGEBR2D( ICTXT, 'Columnwise', ' ', IB, 1,
     $                          IPIV( IPVWRK ), IB, ICURROW, MYCOL )
                  ITMP = IPVWRK + IB - 1
               END IF
*
*              Pivot the block of rows
*
               DO 60 K = I, I-IB+1, -1
                  IP1 = IPIV( ITMP ) - IP + IA
                  IF( IP1.NE.K )
     $               CALL PSSWAP( N, A, K, JA, DESCA, MA, A, IP1, JA,
     $                            DESCA, MA )
                  ITMP = ITMP - 1
   60          CONTINUE
*
*              Go to previous row of processes, decrement row counter,
*              and figure number of rows to be pivoted next
*
               ICURROW = MOD( NPROW+ICURROW-1, NPROW )
               I = I - IB
               IB = MIN( MBA, I-IA+1 )
            IF( IB .GT. 0 ) GOTO 50
*
*        Otherwise, I'm pivoting the columns of sub( A )
*
         ELSE
            CALL INFOG2L( IP, JP+N-1, DESCIP, NPROW, NPCOL, MYROW,
     $                    MYCOL, IIP, JJP, ICURROW, ICURCOL )
            IPVWRK = NUMROC( DESCIP( N_ ), DESCIP( NB_ ), MYCOL,
     $                       DESCIP( CSRC_ ), NPCOL ) + 1 -
     $                       DESCIP( NB_ )
*
*           If I'm not in the current process column, my JJP points out
*           past end of pivot vector (since I don't own a piece of the
*           last column). Adjust JJP so it points at last pivot entry.
*
            IF( MYCOL.NE.ICURCOL ) JJP = JJP - 1
*
*          Loop over columns in reverse order starting at last column
*
            J = JA + N - 1
            JB = MOD( J, NBA )
            IF( JB .EQ. 0 ) JB = NBA
            JB = MIN( JB, N )
   70       CONTINUE
*
*              Find local pointer into IPIV, and broadcast this block's
*              pivot information to everyone in process row
*
               IF( MYCOL.EQ.ICURCOL ) THEN
                  ITMP = JJP
                  JJP = JJP - JB
                  CALL IGEBS2D( ICTXT, 'Rowwise', ' ', JB, 1,
     $                          IPIV( JJP+1 ), JB )
               ELSE
                  CALL IGEBR2D( ICTXT, 'Rowwise', ' ', JB, 1,
     $                          IPIV( IPVWRK ), JB, MYROW, ICURCOL )
                  ITMP = IPVWRK + JB - 1
               END IF
*
*              Pivot a block of columns
*
               DO 80 K = J, J-JB+1, -1
                  JP1 = IPIV( ITMP ) - JP + JA
                  IF( JP1.NE.K )
     $               CALL PSSWAP( M, A, IA, K, DESCA, 1, A, IA, JP1,
     $                            DESCA, 1 )
                  ITMP = ITMP - 1
   80          CONTINUE
*
*              Go to previous row of processes, decrement row counter,
*              and figure number of rows to be pivoted next
*
               ICURCOL = MOD( NPCOL+ICURCOL-1, NPCOL )
               J = J - JB
               JB = MIN( NBA, J-JA+1 )
            IF( JB .GT. 0 ) GOTO 70
         END IF
*
      END IF
*
      RETURN
*
*     End PSLAPV2
*
      END