File: pslascl.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (528 lines) | stat: -rw-r--r-- 17,922 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
      SUBROUTINE PSLASCL( TYPE, CFROM, CTO, M, N, A, IA, JA, DESCA,
     $                    INFO )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          TYPE
      INTEGER            IA, INFO, JA, M, N
      REAL               CFROM, CTO
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               A( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLASCL multiplies the M-by-N real distributed matrix sub( A )
*  denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM.  This
*  is done without over/underflow as long as the final result
*  CTO * A(I,J) / CFROM does not over/underflow. TYPE specifies that
*  sub( A ) may be full, upper triangular, lower triangular or upper
*  Hessenberg.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  TYPE    (global input) CHARACTER
*          TYPE indices the storage type of the input distributed
*          matrix.
*          = 'G':  sub( A ) is a full matrix,
*          = 'L':  sub( A ) is a lower triangular matrix,
*          = 'U':  sub( A ) is an upper triangular matrix,
*          = 'H':  sub( A ) is an upper Hessenberg matrix.
*
*  CFROM   (global input) REAL
*  CTO     (global input) REAL
*          The distributed matrix sub( A ) is multiplied by CTO/CFROM.
*          A(I,J) is computed without over/underflow if the final
*          result CTO * A(I,J) / CFROM can be represented without
*          over/underflow.  CFROM must be nonzero.
*
*  M       (global input) INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) REAL pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          This array contains the local pieces of the distributed
*          matrix sub( A ). On exit, this array contains the local
*          pieces of the distributed matrix multiplied by CTO/CFROM.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  INFO    (local output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE, ZERO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DONE
      INTEGER            IACOL, IAROW, ICOFFA, ICTXT, ICURCOL, ICURROW,
     $                   IIA, II, INXTROW, IOFFA, IROFFA, ITYPE, J, JB,
     $                   JJA, JJ, JN, KK, LDA, LL, MYCOL, MYROW, MP,
     $                   NPCOL, NPROW, NQ
      REAL               BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, INFOG2L, PXERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, SISNAN
      INTEGER            ICEIL, NUMROC
      REAL               PSLAMCH
      EXTERNAL           SISNAN, ICEIL, LSAME, NUMROC, PSLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      IF( NPROW.EQ.-1 ) THEN
         INFO = -907
      ELSE
         INFO = 0
         CALL CHK1MAT( M, 4, N, 6, IA, JA, DESCA, 9, INFO )
         IF( INFO.EQ.0 ) THEN
            IF( LSAME( TYPE, 'G' ) ) THEN
               ITYPE = 0
            ELSE IF( LSAME( TYPE, 'L' ) ) THEN
               ITYPE = 1
            ELSE IF( LSAME( TYPE, 'U' ) ) THEN
               ITYPE = 2
            ELSE IF( LSAME( TYPE, 'H' ) ) THEN
               ITYPE = 3
            ELSE
               ITYPE = -1
            END IF
            IF( ITYPE.EQ.-1 ) THEN
               INFO = -1
            ELSE IF( CFROM.EQ.ZERO .OR. SISNAN(CFROM) ) THEN
               INFO = -4
            ELSE IF( SISNAN(CTO) ) THEN
               INFO = -5
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PSLASCL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     Get machine parameters
*
      SMLNUM = PSLAMCH( ICTXT, 'S' )
      BIGNUM = ONE / SMLNUM
*
      CFROMC = CFROM
      CTOC = CTO
*
*     Compute local indexes
*
      LDA = DESCA( LLD_ )
      IROFFA = MOD( IA-1, DESCA( MB_ ) )
      ICOFFA = MOD( JA-1, DESCA( NB_ ) )
      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      MP = NUMROC( M+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
      IF( MYROW.EQ.IAROW )
     $   MP = MP - IROFFA
      NQ = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFFA
*
   10 CONTINUE
      CFROM1 = CFROMC*SMLNUM
      IF( CFROM1.EQ.CFROMC ) THEN
!        CFROMC is an inf.  Multiply by a correctly signed zero for
!        finite CTOC, or a NaN if CTOC is infinite.
         MUL = CTOC / CFROMC
         DONE = .TRUE.
         CTO1 = CTOC
      ELSE
         CTO1 = CTOC / BIGNUM
         IF( CTO1.EQ.CTOC ) THEN
!           CTOC is either 0 or an inf.  In both cases, CTOC itself
!           serves as the correct multiplication factor.
            MUL = CTOC
            DONE = .TRUE.
            CFROMC = ONE
         ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
            MUL = SMLNUM
            DONE = .FALSE.
            CFROMC = CFROM1
         ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
            MUL = BIGNUM
            DONE = .FALSE.
            CTOC = CTO1
         ELSE
            MUL = CTOC / CFROMC
            DONE = .TRUE.
         END IF
      END IF
*
      IOFFA = ( JJA - 1 ) * LDA
      ICURROW = IAROW
      ICURCOL = IACOL
*
      IF( ITYPE.EQ.0 ) THEN
*
*        Full matrix
*
         DO 30 JJ = JJA, JJA+NQ-1
            DO 20 II = IIA, IIA+MP-1
               A( IOFFA+II ) = A( IOFFA+II ) * MUL
   20       CONTINUE
            IOFFA = IOFFA + LDA
   30    CONTINUE
*
      ELSE IF( ITYPE.EQ.1 ) THEN
*
*        Lower triangular matrix
*
         II = IIA
         JJ = JJA
         JB = JN-JA+1
*
         IF( MYCOL.EQ.ICURCOL ) THEN
            IF( MYROW.EQ.ICURROW ) THEN
               DO 50 LL = JJ, JJ + JB -1
                  DO 40 KK = II+LL-JJ, IIA+MP-1
                     A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
   40             CONTINUE
                  IOFFA = IOFFA + LDA
   50          CONTINUE
            ELSE
               DO 70 LL = JJ, JJ + JB -1
                  DO 60 KK = II, IIA+MP-1
                     A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
   60             CONTINUE
                  IOFFA = IOFFA + LDA
   70          CONTINUE
            END IF
            JJ = JJ + JB
         END IF
*
         IF( MYROW.EQ.ICURROW )
     $      II = II + JB
         ICURROW = MOD( ICURROW+1, NPROW )
         ICURCOL = MOD( ICURCOL+1, NPCOL )
*
*        Loop over remaining block of columns
*
         DO 120 J = JN+1, JA+N-1, DESCA( NB_ )
            JB = MIN( JA+N-J, DESCA( NB_ ) )
*
            IF( MYCOL.EQ.ICURCOL ) THEN
               IF( MYROW.EQ.ICURROW ) THEN
                  DO 90 LL = JJ, JJ + JB -1
                     DO 80 KK = II+LL-JJ, IIA+MP-1
                        A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
   80                CONTINUE
                     IOFFA = IOFFA + LDA
   90             CONTINUE
               ELSE
                  DO 110 LL = JJ, JJ + JB -1
                     DO 100 KK = II, IIA+MP-1
                        A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  100                CONTINUE
                     IOFFA = IOFFA + LDA
  110             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.ICURROW )
     $         II = II + JB
            ICURROW = MOD( ICURROW+1, NPROW )
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
  120    CONTINUE
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Upper triangular matrix
*
         II = IIA
         JJ = JJA
         JB = JN-JA+1
*
         IF( MYCOL.EQ.ICURCOL ) THEN
            IF( MYROW.EQ.ICURROW ) THEN
               DO 140 LL = JJ, JJ + JB -1
                  DO 130 KK = IIA, MIN(II+LL-JJ,IIA+MP-1)
                     A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  130             CONTINUE
                  IOFFA = IOFFA + LDA
  140          CONTINUE
            ELSE
               DO 160 LL = JJ, JJ + JB -1
                  DO 150 KK = IIA, MIN(II-1,IIA+MP-1)
                     A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  150             CONTINUE
                  IOFFA = IOFFA + LDA
  160          CONTINUE
            END IF
            JJ = JJ + JB
         END IF
*
         IF( MYROW.EQ.ICURROW )
     $      II = II + JB
         ICURROW = MOD( ICURROW+1, NPROW )
         ICURCOL = MOD( ICURCOL+1, NPCOL )
*
*        Loop over remaining block of columns
*
         DO 210 J = JN+1, JA+N-1, DESCA( NB_ )
            JB = MIN( JA+N-J, DESCA( NB_ ) )
*
            IF( MYCOL.EQ.ICURCOL ) THEN
               IF( MYROW.EQ.ICURROW ) THEN
                  DO 180 LL = JJ, JJ + JB -1
                     DO 170 KK = IIA, MIN(II+LL-JJ,IIA+MP-1)
                        A( IOFFA+KK ) = A( IOFFA+KK )*MUL
  170                CONTINUE
                     IOFFA = IOFFA + LDA
  180             CONTINUE
               ELSE
                  DO 200 LL = JJ, JJ + JB -1
                     DO 190 KK = IIA, MIN(II-1,IIA+MP-1)
                        A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  190                CONTINUE
                     IOFFA = IOFFA + LDA
  200             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.ICURROW )
     $         II = II + JB
            ICURROW = MOD( ICURROW+1, NPROW )
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
  210    CONTINUE
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Upper Hessenberg matrix
*
         II = IIA
         JJ = JJA
         JB = JN-JA+1
*
*        Only one process row
*
         IF( NPROW.EQ.1 ) THEN
*
*           Handle first block of columns separately
*
            IF( MYCOL.EQ.ICURCOL ) THEN
               DO 230 LL = JJ, JJ+JB-1
                  DO 220 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                     A( IOFFA+KK ) = A( IOFFA+KK )*MUL
  220             CONTINUE
                  IOFFA = IOFFA + LDA
  230          CONTINUE
               JJ = JJ + JB
            END IF
*
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 260 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.ICURCOL ) THEN
                  DO 250 LL = JJ, JJ+JB-1
                     DO 240 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                        A( IOFFA+KK ) = A( IOFFA+KK )*MUL
  240                CONTINUE
                     IOFFA = IOFFA + LDA
  250             CONTINUE
                  JJ = JJ + JB
               END IF
*
               II = II + JB
               ICURCOL = MOD( ICURCOL+1, NPCOL )
*
  260       CONTINUE
*
         ELSE
*
*           Handle first block of columns separately
*
            INXTROW = MOD( ICURROW+1, NPROW )
            IF( MYCOL.EQ.ICURCOL ) THEN
               IF( MYROW.EQ.ICURROW ) THEN
                  DO 280 LL = JJ, JJ + JB -1
                     DO 270 KK = IIA, MIN(II+LL-JJ+1,IIA+MP-1)
                        A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  270                CONTINUE
                     IOFFA = IOFFA + LDA
  280             CONTINUE
               ELSE
                  DO 300 LL = JJ, JJ + JB -1
                     DO 290 KK = IIA, MIN(II-1,IIA+MP-1)
                        A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  290                CONTINUE
                     IOFFA = IOFFA + LDA
  300             CONTINUE
                  IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+MP-1 )
     $               A( II+(JJ+JB-2)*LDA ) = A( II+(JJ+JB-2)*LDA ) * MUL
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.ICURROW )
     $         II = II + JB
            ICURROW = INXTROW
            ICURROW = MOD( ICURROW+1, NPROW )
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 350 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.ICURCOL ) THEN
                  IF( MYROW.EQ.ICURROW ) THEN
                     DO 320 LL = JJ, JJ + JB -1
                        DO 310 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                           A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  310                   CONTINUE
                        IOFFA = IOFFA + LDA
  320                CONTINUE
                  ELSE
                     DO 340 LL = JJ, JJ + JB -1
                        DO 330 KK = IIA, MIN( II-1, IIA+MP-1 )
                           A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
  330                   CONTINUE
                        IOFFA = IOFFA + LDA
  340                CONTINUE
                     IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+MP-1 )
     $                  A( II+(JJ+JB-2)*LDA ) = A( II+(JJ+JB-2)*LDA ) *
     $                                          MUL
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.ICURROW )
     $            II = II + JB
               ICURROW = INXTROW
               ICURROW = MOD( ICURROW+1, NPROW )
               ICURCOL = MOD( ICURCOL+1, NPCOL )
*
  350       CONTINUE
*
         END IF
*
      END IF
*
      IF( .NOT.DONE )
     $   GO TO 10
*
      RETURN
*
*     End of PSLASCL
*
      END