1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
SUBROUTINE PSLASCL( TYPE, CFROM, CTO, M, N, A, IA, JA, DESCA,
$ INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER TYPE
INTEGER IA, INFO, JA, M, N
REAL CFROM, CTO
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * )
* ..
*
* Purpose
* =======
*
* PSLASCL multiplies the M-by-N real distributed matrix sub( A )
* denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM. This
* is done without over/underflow as long as the final result
* CTO * A(I,J) / CFROM does not over/underflow. TYPE specifies that
* sub( A ) may be full, upper triangular, lower triangular or upper
* Hessenberg.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* TYPE (global input) CHARACTER
* TYPE indices the storage type of the input distributed
* matrix.
* = 'G': sub( A ) is a full matrix,
* = 'L': sub( A ) is a lower triangular matrix,
* = 'U': sub( A ) is an upper triangular matrix,
* = 'H': sub( A ) is an upper Hessenberg matrix.
*
* CFROM (global input) REAL
* CTO (global input) REAL
* The distributed matrix sub( A ) is multiplied by CTO/CFROM.
* A(I,J) is computed without over/underflow if the final
* result CTO * A(I,J) / CFROM can be represented without
* over/underflow. CFROM must be nonzero.
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* This array contains the local pieces of the distributed
* matrix sub( A ). On exit, this array contains the local
* pieces of the distributed matrix multiplied by CTO/CFROM.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* INFO (local output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
INTEGER IACOL, IAROW, ICOFFA, ICTXT, ICURCOL, ICURROW,
$ IIA, II, INXTROW, IOFFA, IROFFA, ITYPE, J, JB,
$ JJA, JJ, JN, KK, LDA, LL, MYCOL, MYROW, MP,
$ NPCOL, NPROW, NQ
REAL BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, INFOG2L, PXERBLA
* ..
* .. External Functions ..
LOGICAL LSAME, SISNAN
INTEGER ICEIL, NUMROC
REAL PSLAMCH
EXTERNAL SISNAN, ICEIL, LSAME, NUMROC, PSLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
IF( NPROW.EQ.-1 ) THEN
INFO = -907
ELSE
INFO = 0
CALL CHK1MAT( M, 4, N, 6, IA, JA, DESCA, 9, INFO )
IF( INFO.EQ.0 ) THEN
IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE
ITYPE = -1
END IF
IF( ITYPE.EQ.-1 ) THEN
INFO = -1
ELSE IF( CFROM.EQ.ZERO .OR. SISNAN(CFROM) ) THEN
INFO = -4
ELSE IF( SISNAN(CTO) ) THEN
INFO = -5
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PSLASCL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* Get machine parameters
*
SMLNUM = PSLAMCH( ICTXT, 'S' )
BIGNUM = ONE / SMLNUM
*
CFROMC = CFROM
CTOC = CTO
*
* Compute local indexes
*
LDA = DESCA( LLD_ )
IROFFA = MOD( IA-1, DESCA( MB_ ) )
ICOFFA = MOD( JA-1, DESCA( NB_ ) )
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
MP = NUMROC( M+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
IF( MYROW.EQ.IAROW )
$ MP = MP - IROFFA
NQ = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFFA
*
10 CONTINUE
CFROM1 = CFROMC*SMLNUM
IF( CFROM1.EQ.CFROMC ) THEN
! CFROMC is an inf. Multiply by a correctly signed zero for
! finite CTOC, or a NaN if CTOC is infinite.
MUL = CTOC / CFROMC
DONE = .TRUE.
CTO1 = CTOC
ELSE
CTO1 = CTOC / BIGNUM
IF( CTO1.EQ.CTOC ) THEN
! CTOC is either 0 or an inf. In both cases, CTOC itself
! serves as the correct multiplication factor.
MUL = CTOC
DONE = .TRUE.
CFROMC = ONE
ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
MUL = SMLNUM
DONE = .FALSE.
CFROMC = CFROM1
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
MUL = BIGNUM
DONE = .FALSE.
CTOC = CTO1
ELSE
MUL = CTOC / CFROMC
DONE = .TRUE.
END IF
END IF
*
IOFFA = ( JJA - 1 ) * LDA
ICURROW = IAROW
ICURCOL = IACOL
*
IF( ITYPE.EQ.0 ) THEN
*
* Full matrix
*
DO 30 JJ = JJA, JJA+NQ-1
DO 20 II = IIA, IIA+MP-1
A( IOFFA+II ) = A( IOFFA+II ) * MUL
20 CONTINUE
IOFFA = IOFFA + LDA
30 CONTINUE
*
ELSE IF( ITYPE.EQ.1 ) THEN
*
* Lower triangular matrix
*
II = IIA
JJ = JJA
JB = JN-JA+1
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 50 LL = JJ, JJ + JB -1
DO 40 KK = II+LL-JJ, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
40 CONTINUE
IOFFA = IOFFA + LDA
50 CONTINUE
ELSE
DO 70 LL = JJ, JJ + JB -1
DO 60 KK = II, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
60 CONTINUE
IOFFA = IOFFA + LDA
70 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 120 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 90 LL = JJ, JJ + JB -1
DO 80 KK = II+LL-JJ, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
80 CONTINUE
IOFFA = IOFFA + LDA
90 CONTINUE
ELSE
DO 110 LL = JJ, JJ + JB -1
DO 100 KK = II, IIA+MP-1
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
100 CONTINUE
IOFFA = IOFFA + LDA
110 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
120 CONTINUE
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Upper triangular matrix
*
II = IIA
JJ = JJA
JB = JN-JA+1
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 140 LL = JJ, JJ + JB -1
DO 130 KK = IIA, MIN(II+LL-JJ,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
130 CONTINUE
IOFFA = IOFFA + LDA
140 CONTINUE
ELSE
DO 160 LL = JJ, JJ + JB -1
DO 150 KK = IIA, MIN(II-1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
150 CONTINUE
IOFFA = IOFFA + LDA
160 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 210 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 180 LL = JJ, JJ + JB -1
DO 170 KK = IIA, MIN(II+LL-JJ,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK )*MUL
170 CONTINUE
IOFFA = IOFFA + LDA
180 CONTINUE
ELSE
DO 200 LL = JJ, JJ + JB -1
DO 190 KK = IIA, MIN(II-1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
190 CONTINUE
IOFFA = IOFFA + LDA
200 CONTINUE
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
210 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Upper Hessenberg matrix
*
II = IIA
JJ = JJA
JB = JN-JA+1
*
* Only one process row
*
IF( NPROW.EQ.1 ) THEN
*
* Handle first block of columns separately
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 230 LL = JJ, JJ+JB-1
DO 220 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK )*MUL
220 CONTINUE
IOFFA = IOFFA + LDA
230 CONTINUE
JJ = JJ + JB
END IF
*
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 260 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
DO 250 LL = JJ, JJ+JB-1
DO 240 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK )*MUL
240 CONTINUE
IOFFA = IOFFA + LDA
250 CONTINUE
JJ = JJ + JB
END IF
*
II = II + JB
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
260 CONTINUE
*
ELSE
*
* Handle first block of columns separately
*
INXTROW = MOD( ICURROW+1, NPROW )
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 280 LL = JJ, JJ + JB -1
DO 270 KK = IIA, MIN(II+LL-JJ+1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
270 CONTINUE
IOFFA = IOFFA + LDA
280 CONTINUE
ELSE
DO 300 LL = JJ, JJ + JB -1
DO 290 KK = IIA, MIN(II-1,IIA+MP-1)
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
290 CONTINUE
IOFFA = IOFFA + LDA
300 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+MP-1 )
$ A( II+(JJ+JB-2)*LDA ) = A( II+(JJ+JB-2)*LDA ) * MUL
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = INXTROW
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
* Loop over remaining block of columns
*
DO 350 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( JA+N-J, DESCA( NB_ ) )
*
IF( MYCOL.EQ.ICURCOL ) THEN
IF( MYROW.EQ.ICURROW ) THEN
DO 320 LL = JJ, JJ + JB -1
DO 310 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
310 CONTINUE
IOFFA = IOFFA + LDA
320 CONTINUE
ELSE
DO 340 LL = JJ, JJ + JB -1
DO 330 KK = IIA, MIN( II-1, IIA+MP-1 )
A( IOFFA+KK ) = A( IOFFA+KK ) * MUL
330 CONTINUE
IOFFA = IOFFA + LDA
340 CONTINUE
IF( MYROW.EQ.INXTROW .AND. II.LE.IIA+MP-1 )
$ A( II+(JJ+JB-2)*LDA ) = A( II+(JJ+JB-2)*LDA ) *
$ MUL
END IF
JJ = JJ + JB
END IF
*
IF( MYROW.EQ.ICURROW )
$ II = II + JB
ICURROW = INXTROW
ICURROW = MOD( ICURROW+1, NPROW )
ICURCOL = MOD( ICURCOL+1, NPCOL )
*
350 CONTINUE
*
END IF
*
END IF
*
IF( .NOT.DONE )
$ GO TO 10
*
RETURN
*
* End of PSLASCL
*
END
|