1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
SUBROUTINE PSLASRT( ID, N, D, Q, IQ, JQ, DESCQ, WORK, LWORK,
$ IWORK, LIWORK, INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
* .. Scalar Arguments ..
CHARACTER ID
INTEGER INFO, IQ, JQ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCQ( * ), IWORK( * )
REAL D( * ), Q( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSLASRT Sort the numbers in D in increasing order and the
* corresponding vectors in Q.
*
* Arguments
* =========
*
* ID (global input) CHARACTER*1
* = 'I': sort D in increasing order;
* = 'D': sort D in decreasing order. (NOT IMPLEMENTED YET)
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( Q ). N >= 0.
*
* D (global input/output) REAL array, dimmension (N)
* On exit, the number in D are sorted in increasing order.
*
* Q (local input) REAL pointer into the local memory
* to an array of dimension (LLD_Q, LOCc(JQ+N-1) ). This array
* contains the local pieces of the distributed matrix sub( A )
* to be copied from.
*
* IQ (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( Q ).
*
* JQ (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( Q ).
*
* DESCQ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WORK (local workspace/local output) REAL array,
* dimension (LWORK)
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK = MAX( N, NP * ( NB + NQ ))
* where
* NP = NUMROC( N, NB, MYROW, IAROW, NPROW ),
* NQ = NUMROC( N, NB, MYCOL, DESCQ( CSRC_ ), NPCOL )
*
* IWORK (local workspace/local output) INTEGER array,
* dimension (LIWORK)
*
* LIWORK (local or global input) INTEGER
* The dimension of the array IWORK.
* LIWORK = N + 2*NB + 2*NPCOL
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER CL, COL, DUMMY, I, ICTXT, IID, IIQ, INDCOL,
$ INDX, INDXC, INDXG, IPQ, IPQ2, IPW, IPWORK, J,
$ JJQ, K, L, LDQ, LEND, LIWMIN, LWMIN, MYCOL,
$ MYROW, NB, ND, NP, NPCOL, NPROW, NQ, PSQ, QCOL,
$ QTOT, SBUF
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER INDXG2L, INDXG2P, NUMROC
EXTERNAL INDXG2L, INDXG2P, LSAME, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, PXERBLA, SCOPY,
$ SGERV2D, SGESD2D, SLAMOV, SLAPST
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
IF( N.EQ.0 )
$ RETURN
*
ICTXT = DESCQ( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 600+CTXT_ )
ELSE
CALL CHK1MAT( N, 1, N, 1, IQ, JQ, DESCQ, 6, INFO )
IF( INFO.EQ.0 ) THEN
NB = DESCQ( NB_ )
LDQ = DESCQ( LLD_ )
NP = NUMROC( N, NB, MYROW, DESCQ( RSRC_ ), NPROW )
NQ = NUMROC( N, NB, MYCOL, DESCQ( CSRC_ ), NPCOL )
LWMIN = MAX( N, NP*( NB+NQ ) )
LIWMIN = N + 2*( NB+NPCOL )
IF( .NOT.LSAME( ID, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LWORK.LT.LWMIN ) THEN
INFO = -9
ELSE IF( LIWORK.LT.LIWMIN ) THEN
INFO = -11
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PSLASRT', -INFO )
RETURN
END IF
*
* Set Pointers
*
INDXC = 1
INDX = INDXC + N
INDXG = INDX
INDCOL = INDXG + NB
QTOT = INDCOL + NB
PSQ = QTOT + NPCOL
*
IID = 1
IPQ2 = 1
IPW = IPQ2 + NP*NQ
*
DUMMY = 0
IIQ = INDXG2L( IQ, NB, DUMMY, DUMMY, NPROW )
*
* Sort the eigenvalues in D
*
CALL SLAPST( 'I', N, D, IWORK( INDX ), INFO )
*
DO 10 L = 0, N - 1
WORK( IID+L ) = D( IWORK( INDX+L ) )
IWORK( INDXC-1+IWORK( INDX+L ) ) = IID + L
10 CONTINUE
CALL SCOPY( N, WORK, 1, D, 1 )
*
ND = 0
20 CONTINUE
IF( ND.LT.N ) THEN
LEND = MIN( NB, N-ND )
J = JQ + ND
QCOL = INDXG2P( J, NB, DUMMY, DESCQ( CSRC_ ), NPCOL )
K = 0
DO 30 L = 0, LEND - 1
I = JQ - 1 + IWORK( INDXC+ND+L )
CL = INDXG2P( I, NB, DUMMY, DESCQ( CSRC_ ), NPCOL )
IWORK( INDCOL+L ) = CL
IF( MYCOL.EQ.CL ) THEN
IWORK( INDXG+K ) = IWORK( INDXC+ND+L )
K = K + 1
END IF
30 CONTINUE
*
IF( MYCOL.EQ.QCOL ) THEN
DO 40 CL = 0, NPCOL - 1
IWORK( QTOT+CL ) = 0
40 CONTINUE
DO 50 L = 0, LEND - 1
IWORK( QTOT+IWORK( INDCOL+L ) ) = IWORK( QTOT+
$ IWORK( INDCOL+L ) ) + 1
50 CONTINUE
IWORK( PSQ ) = 1
DO 60 CL = 1, NPCOL - 1
IWORK( PSQ+CL ) = IWORK( PSQ+CL-1 ) + IWORK( QTOT+CL-1 )
60 CONTINUE
DO 70 L = 0, LEND - 1
CL = IWORK( INDCOL+L )
I = JQ + ND + L
JJQ = INDXG2L( I, NB, DUMMY, DUMMY, NPCOL )
IPQ = IIQ + ( JJQ-1 )*LDQ
IPWORK = IPW + ( IWORK( PSQ+CL )-1 )*NP
CALL SCOPY( NP, Q( IPQ ), 1, WORK( IPWORK ), 1 )
IWORK( PSQ+CL ) = IWORK( PSQ+CL ) + 1
70 CONTINUE
IWORK( PSQ ) = 1
DO 80 CL = 1, NPCOL - 1
IWORK( PSQ+CL ) = IWORK( PSQ+CL-1 ) + IWORK( QTOT+CL-1 )
80 CONTINUE
DO 90 L = 0, K - 1
I = IWORK( INDXG+L )
JJQ = INDXG2L( I, NB, DUMMY, DUMMY, NPCOL )
IPQ = IPQ2 + ( JJQ-1 )*NP
IPWORK = IPW + ( IWORK( PSQ+MYCOL )-1 )*NP
CALL SCOPY( NP, WORK( IPWORK ), 1, WORK( IPQ ), 1 )
IWORK( PSQ+MYCOL ) = IWORK( PSQ+MYCOL ) + 1
90 CONTINUE
DO 100 CL = 1, NPCOL - 1
COL = MOD( MYCOL+CL, NPCOL )
SBUF = IWORK( QTOT+COL )
IF( SBUF.NE.0 ) THEN
IPWORK = IPW + ( IWORK( PSQ+COL )-1 )*NP
CALL SGESD2D( DESCQ( CTXT_ ), NP, SBUF,
$ WORK( IPWORK ), NP, MYROW, COL )
END IF
100 CONTINUE
*
ELSE
*
IF( K.NE.0 ) THEN
CALL SGERV2D( DESCQ( CTXT_ ), NP, K, WORK( IPW ), NP,
$ MYROW, QCOL )
DO 110 L = 0, K - 1
I = JQ - 1 + IWORK( INDXG+L )
JJQ = INDXG2L( I, NB, DUMMY, DUMMY, NPCOL )
IPQ = 1 + ( JJQ-1 )*NP
IPWORK = IPW + L*NP
CALL SCOPY( NP, WORK( IPWORK ), 1, WORK( IPQ ), 1 )
110 CONTINUE
END IF
END IF
ND = ND + NB
GO TO 20
END IF
CALL SLAMOV( 'Full', NP, NQ, WORK, NP, Q( IIQ ), LDQ )
*
* End of PSLASRT
*
END
|