1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
SUBROUTINE PSLASWP( DIREC, ROWCOL, N, A, IA, JA, DESCA, K1, K2,
$ IPIV )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER DIREC, ROWCOL
INTEGER IA, JA, K1, K2, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), IPIV( * )
REAL A( * )
* ..
*
* Purpose:
* ========
*
* PSLASWP performs a series of row or column interchanges on
* the distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1). One
* interchange is initiated for each of rows or columns K1 trough K2 of
* sub( A ). This routine assumes that the pivoting information has
* already been broadcast along the process row or column.
* Also note that this routine will only work for K1-K2 being in the
* same MB (or NB) block. If you want to pivot a full matrix, use
* PSLAPIV.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* DIREC (global input) CHARACTER
* Specifies in which order the permutation is applied:
* = 'F' (Forward)
* = 'B' (Backward)
*
* ROWCOL (global input) CHARACTER
* Specifies if the rows or columns are permuted:
* = 'R' (Rows)
* = 'C' (Columns)
*
* N (global input) INTEGER
* If ROWCOL = 'R', the length of the rows of the distributed
* matrix A(*,JA:JA+N-1) to be permuted;
* If ROWCOL = 'C', the length of the columns of the distributed
* matrix A(IA:IA+N-1,*) to be permuted.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A, * ).
* On entry, this array contains the local pieces of the distri-
* buted matrix to which the row/columns interchanges will be
* applied. On exit the permuted distributed matrix.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* K1 (global input) INTEGER
* The first element of IPIV for which a row or column inter-
* change will be done.
*
* K2 (global input) INTEGER
* The last element of IPIV for which a row or column inter-
* change will be done.
*
* IPIV (local input) INTEGER array, dimension LOCr(M_A)+MB_A for
* row pivoting and LOCc(N_A)+NB_A for column pivoting. This
* array is tied to the matrix A, IPIV(K) = L implies rows
* (or columns) K and L are to be interchanged.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER I, ICURCOL, ICURROW, IIA, IP, J, JJA, JP,
$ MYCOL, MYROW, NPCOL, NPROW
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L, PSSWAP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
IF( LSAME( ROWCOL, 'R' ) ) THEN
IF( LSAME( DIREC, 'F' ) ) THEN
CALL INFOG2L( K1, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IIA, JJA, ICURROW, ICURCOL )
DO 10 I = K1, K2
IP = IPIV( IIA+I-K1 )
IF( IP.NE.I )
$ CALL PSSWAP( N, A, I, JA, DESCA, DESCA( M_ ), A, IP,
$ JA, DESCA, DESCA( M_ ) )
10 CONTINUE
ELSE
CALL INFOG2L( K2, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IIA, JJA, ICURROW, ICURCOL )
DO 20 I = K2, K1, -1
IP = IPIV( IIA+I-K1 )
IF( IP.NE.I )
$ CALL PSSWAP( N, A, I, JA, DESCA, DESCA( M_ ), A, IP,
$ JA, DESCA, DESCA( M_ ) )
20 CONTINUE
END IF
ELSE
IF( LSAME( DIREC, 'F' ) ) THEN
CALL INFOG2L( IA, K1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IIA, JJA, ICURROW, ICURCOL )
DO 30 J = K1, K2
JP = IPIV( JJA+J-K1 )
IF( JP.NE.J )
$ CALL PSSWAP( N, A, IA, J, DESCA, 1, A, IA, JP,
$ DESCA, 1 )
30 CONTINUE
ELSE
CALL INFOG2L( IA, K2, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IIA, JJA, ICURROW, ICURCOL )
DO 40 J = K2, K1, -1
JP = IPIV( JJA+J-K1 )
IF( JP.NE.J )
$ CALL PSSWAP( N, A, IA, J, DESCA, 1, A, IA, JP,
$ DESCA, 1 )
40 CONTINUE
END IF
END IF
*
RETURN
*
* End PSLASWP
*
END
|