1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
SUBROUTINE PSORG2R( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
$ INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 25, 2001
*
* .. Scalar Arguments ..
INTEGER IA, INFO, JA, K, LWORK, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSORG2R generates an M-by-N real distributed matrix Q denoting
* A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as
* the first N columns of a product of K elementary reflectors of order
* M
*
* Q = H(1) H(2) . . . H(k)
*
* as returned by PSGEQRF.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix Q. M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix Q. M >= N >= 0.
*
* K (global input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. N >= K >= 0.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* On entry, the j-th column must contain the vector which
* defines the elementary reflector H(j), JA <= j <= JA+K-1, as
* returned by PSGEQRF in the K columns of its array
* argument A(IA:*,JA:JA+K-1). On exit, this array contains
* the local pieces of the M-by-N distributed matrix Q.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* TAU (local input) REAL, array, dimension LOCc(JA+K-1).
* This array contains the scalar factors TAU(j) of the
* elementary reflectors H(j) as returned by PSGEQRF.
* TAU is tied to the distributed matrix A.
*
* WORK (local workspace/local output) REAL array,
* dimension (LWORK)
* On exit, WORK(1) returns the minimal and optimal LWORK.
*
* LWORK (local or global input) INTEGER
* The dimension of the array WORK.
* LWORK is local input and must be at least
* LWORK >= MpA0 + MAX( 1, NqA0 ), where
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
*
* INFO (local output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
CHARACTER COLBTOP, ROWBTOP
INTEGER IACOL, IAROW, ICTXT, J, JJ, KQ, LWMIN, MPA0,
$ MYCOL, MYROW, NPCOL, NPROW, NQA0
REAL TAUJ
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GRIDINFO, CHK1MAT, PSELSET,
$ PSLARF, PSLASET, PSSCAL, PB_TOPGET,
$ PB_TOPSET, PXERBLA
* ..
* .. External Functions ..
INTEGER INDXG2L, INDXG2P, NUMROC
EXTERNAL INDXG2L, INDXG2P, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD, REAL
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(700+CTXT_)
ELSE
CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 7, INFO )
IF( INFO.EQ.0 ) THEN
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
$ NPROW )
IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
MPA0 = NUMROC( M+MOD( IA-1, DESCA( MB_ ) ), DESCA( MB_ ),
$ MYROW, IAROW, NPROW )
NQA0 = NUMROC( N+MOD( JA-1, DESCA( NB_ ) ), DESCA( NB_ ),
$ MYCOL, IACOL, NPCOL )
LWMIN = MPA0 + MAX( 1, NQA0 )
*
WORK( 1 ) = REAL( LWMIN )
LQUERY = ( LWORK.EQ.-1 )
IF( N.GT.M ) THEN
INFO = -2
ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
INFO = -3
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
END IF
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PSORG2R', -INFO )
CALL BLACS_ABORT( ICTXT, 1 )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'D-ring' )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
*
* Initialise columns ja+k:ja+n-1 to columns of the unit matrix
*
CALL PSLASET( 'All', K, N-K, ZERO, ZERO, A, IA, JA+K, DESCA )
CALL PSLASET( 'All', M-K, N-K, ZERO, ONE, A, IA+K, JA+K, DESCA )
*
TAUJ = ZERO
KQ = MAX( 1, NUMROC( JA+K-1, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL ) )
DO 10 J = JA+K-1, JA, -1
*
* Apply H(j) to A(ia+j-ja:ia+m-1,j:ja+n-1) from the left
*
IF( J.LT.JA+N-1 ) THEN
CALL PSELSET( A, IA+J-JA, J, DESCA, ONE )
CALL PSLARF( 'Left', M-J+JA, JA+N-J-1, A, IA+J-JA, J, DESCA,
$ 1, TAU, A, IA+J-JA, J+1, DESCA, WORK )
END IF
*
JJ = INDXG2L( J, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ), NPCOL )
IACOL = INDXG2P( J, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
$ NPCOL )
IF( MYCOL.EQ.IACOL )
$ TAUJ = TAU( MIN( JJ, KQ ) )
IF( J-JA.LT.M-1 )
$ CALL PSSCAL( M-J+JA-1, -TAUJ, A, IA+J-JA+1, J, DESCA, 1 )
CALL PSELSET( A, IA+J-JA, J, DESCA, ONE-TAUJ )
*
* Set A(ia:ia+j-ja-1,j) to zero
*
CALL PSLASET( 'All', J-JA, 1, ZERO, ZERO, A, IA, J, DESCA )
*
10 CONTINUE
*
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
WORK( 1 ) = REAL( LWMIN )
*
RETURN
*
* End of PSORG2R
*
END
|