1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
SUBROUTINE PSPOTF2( UPLO, N, A, IA, JA, DESCA, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER IA, INFO, JA, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * )
* ..
*
* Purpose
* =======
*
* PSPOTF2 computes the Cholesky factorization of a real symmetric
* positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1).
*
* The factorization has the form
*
* sub( A ) = U' * U , if UPLO = 'U', or
*
* sub( A ) = L * L', if UPLO = 'L',
*
* where U is an upper triangular matrix and L is lower triangular.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* This routine requires N <= NB_A-MOD(JA-1, NB_A) and square block
* decomposition ( MB_A = NB_A ).
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER
* = 'U': Upper triangle of sub( A ) is stored;
* = 'L': Lower triangle of sub( A ) is stored.
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the
* N-by-N symmetric distributed matrix sub( A ) to be factored.
* If UPLO = 'U', the leading N-by-N upper triangular part of
* sub( A ) contains the upper triangular part of the matrix,
* and its strictly lower triangular part is not referenced.
* If UPLO = 'L', the leading N-by-N lower triangular part of
* sub( A ) contains the lower triangular part of the distribu-
* ted matrix, and its strictly upper triangular part is not
* referenced. On exit, if UPLO = 'U', the upper triangular
* part of the distributed matrix contains the Cholesky factor
* U, if UPLO = 'L', the lower triangular part of the distribu-
* ted matrix contains the Cholesky factor L.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* INFO (local output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: If INFO = K, the leading minor of order K,
* A(IA:IA+K-1,JA:JA+K-1) is not positive definite, and
* the factorization could not be completed.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER COLBTOP, ROWBTOP
INTEGER IACOL, IAROW, ICOFF, ICTXT, ICURR, IDIAG, IIA,
$ IOFFA, IROFF, J, JJA, LDA, MYCOL, MYROW,
$ NPCOL, NPROW
REAL AJJ
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GRIDINFO, CHK1MAT, IGEBR2D,
$ IGEBS2D, INFOG2L, PB_TOPGET, PXERBLA, SGEMV,
$ SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD, SQRT
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT
EXTERNAL LSAME, SDOT
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters.
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(600+CTXT_)
ELSE
CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
IF( INFO.EQ.0 ) THEN
UPPER = LSAME( UPLO, 'U' )
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
IF ( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N+ICOFF.GT.DESCA( NB_ ) ) THEN
INFO = -2
ELSE IF( IROFF.NE.0 ) THEN
INFO = -4
ELSE IF( ICOFF.NE.0 ) THEN
INFO = -5
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -(600+NB_)
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PSPOTF2', -INFO )
CALL BLACS_ABORT( ICTXT, 1 )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute local information
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
IF ( UPPER ) THEN
*
* Process (IAROW, IACOL) owns block to be factorized
*
IF( MYROW.EQ.IAROW ) THEN
IF( MYCOL.EQ.IACOL ) THEN
*
* Compute the Cholesky factorization A = U'*U.
*
LDA = DESCA( LLD_ )
IDIAG = IIA + ( JJA - 1 ) * LDA
IOFFA = IDIAG
*
DO 10 J = JA, JA+N-1
*
* Compute U(J,J) and test for non-positive-definiteness.
*
AJJ = A( IDIAG ) -
$ SDOT( J-JA, A( IOFFA ), 1, A( IOFFA ), 1 )
IF( AJJ.LE.ZERO ) THEN
A( IDIAG ) = AJJ
INFO = J - JA + 1
GO TO 20
END IF
AJJ = SQRT( AJJ )
A( IDIAG ) = AJJ
*
* Compute elements J+1:JA+N-1 of row J.
*
IF( J.LT.JA+N-1 ) THEN
ICURR = IDIAG + LDA
CALL SGEMV( 'Transpose', J-JA, JA+N-J-1, -ONE,
$ A( IOFFA+LDA ), LDA, A( IOFFA ), 1,
$ ONE, A( ICURR ), LDA )
CALL SSCAL( N-J+JA-1, ONE / AJJ, A( ICURR ), LDA )
END IF
IDIAG = IDIAG + LDA + 1
IOFFA = IOFFA + LDA
10 CONTINUE
*
20 CONTINUE
*
* Broadcast INFO to all processes in my IAROW.
*
CALL IGEBS2D( ICTXT, 'Rowwise', ROWBTOP, 1, 1, INFO, 1 )
*
ELSE
*
CALL IGEBR2D( ICTXT, 'Rowwise', ROWBTOP, 1, 1, INFO, 1,
$ MYROW, IACOL )
END IF
*
* IAROW bcasts along columns so that everyone has INFO
*
CALL IGEBS2D( ICTXT, 'Columnwise', COLBTOP, 1, 1, INFO, 1 )
*
ELSE
*
CALL IGEBR2D( ICTXT, 'Columnwise', COLBTOP, 1, 1, INFO, 1,
$ IAROW, MYCOL )
*
END IF
*
ELSE
*
* Process (IAROW, IACOL) owns block to be factorized
*
IF( MYCOL.EQ.IACOL ) THEN
IF( MYROW.EQ.IAROW ) THEN
*
* Compute the Cholesky factorization A = L*L'.
*
LDA = DESCA( LLD_ )
IDIAG = IIA + ( JJA - 1 ) * LDA
IOFFA = IDIAG
*
DO 30 J = JA, JA+N-1
*
* Compute L(J,J) and test for non-positive-definiteness.
*
AJJ = A( IDIAG ) -
$ SDOT( J-JA, A( IOFFA ), LDA, A( IOFFA ), LDA )
IF ( AJJ.LE.ZERO ) THEN
A( IDIAG ) = AJJ
INFO = J - JA + 1
GO TO 40
END IF
AJJ = SQRT( AJJ )
A( IDIAG ) = AJJ
*
* Compute elements J+1:JA+N-1 of column J.
*
IF( J.LT.JA+N-1 ) THEN
ICURR = IDIAG + 1
CALL SGEMV( 'No transpose', JA+N-J-1, J-JA, -ONE,
$ A( IOFFA+1 ), LDA, A( IOFFA ), LDA,
$ ONE, A( ICURR ), 1 )
CALL SSCAL( JA+N-J-1, ONE / AJJ, A( ICURR ), 1 )
END IF
IDIAG = IDIAG + LDA + 1
IOFFA = IOFFA + 1
30 CONTINUE
*
40 CONTINUE
*
* Broadcast INFO to everyone in IACOL
*
CALL IGEBS2D( ICTXT, 'Columnwise', COLBTOP, 1, 1, INFO,
$ 1 )
*
ELSE
*
CALL IGEBR2D( ICTXT, 'Columnwise', COLBTOP, 1, 1, INFO,
$ 1, IAROW, MYCOL )
*
END IF
*
* IACOL bcasts INFO along rows so that everyone has it
*
CALL IGEBS2D( ICTXT, 'Rowwise', ROWBTOP, 1, 1, INFO, 1 )
*
ELSE
*
CALL IGEBR2D( ICTXT, 'Rowwise', ROWBTOP, 1, 1, INFO, 1,
$ MYROW, IACOL )
*
END IF
*
END IF
*
RETURN
*
* End of PSPOTF2
*
END
|