1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
SUBROUTINE PSSTEDC( COMPZ, N, D, E, Q, IQ, JQ, DESCQ, WORK, LWORK,
$ IWORK, LIWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* March 13, 2000
*
* .. Scalar Arguments ..
CHARACTER COMPZ
INTEGER INFO, IQ, JQ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCQ( * ), IWORK( * )
REAL D( * ), E( * ), Q( * ), WORK( * )
* ..
*
* Purpose
* =======
* PSSTEDC computes all eigenvalues and eigenvectors of a
* symmetric tridiagonal matrix in parallel, using the divide and
* conquer algorithm.
*
* This code makes very mild assumptions about floating point
* arithmetic. It will work on machines with a guard digit in
* add/subtract, or on those binary machines without guard digits
* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
* It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none. See SLAED3 for details.
*
* Arguments
* =========
*
* COMPZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only. (NOT IMPLEMENTED YET)
* = 'I': Compute eigenvectors of tridiagonal matrix also.
* = 'V': Compute eigenvectors of original dense symmetric
* matrix also. On entry, Z contains the orthogonal
* matrix used to reduce the original matrix to
* tridiagonal form. (NOT IMPLEMENTED YET)
*
* N (global input) INTEGER
* The order of the tridiagonal matrix T. N >= 0.
*
* D (global input/output) REAL array, dimension (N)
* On entry, the diagonal elements of the tridiagonal matrix.
* On exit, if INFO = 0, the eigenvalues in descending order.
*
* E (global input/output) REAL array, dimension (N-1)
* On entry, the subdiagonal elements of the tridiagonal matrix.
* On exit, E has been destroyed.
*
* Q (local output) REAL array,
* local dimension ( LLD_Q, LOCc(JQ+N-1))
* Q contains the orthonormal eigenvectors of the symmetric
* tridiagonal matrix.
* On output, Q is distributed across the P processes in block
* cyclic format.
*
* IQ (global input) INTEGER
* Q's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JQ (global input) INTEGER
* Q's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCQ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
*
* WORK (local workspace/output) REAL array,
* dimension (LWORK)
* On output, WORK(1) returns the workspace needed.
*
* LWORK (local input/output) INTEGER,
* the dimension of the array WORK.
* LWORK = 6*N + 2*NP*NQ
* NP = NUMROC( N, NB, MYROW, DESCQ( RSRC_ ), NPROW )
* NQ = NUMROC( N, NB, MYCOL, DESCQ( CSRC_ ), NPCOL )
*
* If LWORK = -1, the LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* size for the WORK array. The required workspace is returned
* as the first element of WORK and no error message is issued
* by PXERBLA.
*
* IWORK (local workspace/output) INTEGER array, dimension (LIWORK)
* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* LIWORK = 2 + 7*N + 8*NPCOL
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: The algorithm failed to compute the INFO/(N+1) th
* eigenvalue while working on the submatrix lying in
* global rows and columns mod(INFO,N+1).
*
* Further Details
* ======= =======
*
* Contributed by Francoise Tisseur, University of Manchester.
*
* Reference: F. Tisseur and J. Dongarra, "A Parallel Divide and
* Conquer Algorithm for the Symmetric Eigenvalue Problem
* on Distributed Memory Architectures",
* SIAM J. Sci. Comput., 6:20 (1999), pp. 2223--2236.
* (see also LAPACK Working Note 132)
* http://www.netlib.org/lapack/lawns/lawn132.ps
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER ICOFFQ, IIQ, IPQ, IQCOL, IQROW, IROFFQ, JJQ,
$ LDQ, LIWMIN, LWMIN, MYCOL, MYROW, NB, NP,
$ NPCOL, NPROW, NQ
REAL ORGNRM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER INDXG2P, NUMROC
REAL SLANST
EXTERNAL INDXG2P, LSAME, NUMROC, SLANST
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, INFOG2L, PSLAED0,
$ PSLASRT, PXERBLA, SLASCL, SSTEDC
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD, REAL
* ..
* .. Executable Statements ..
*
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* Test the input parameters.
*
CALL BLACS_GRIDINFO( DESCQ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
LDQ = DESCQ( LLD_ )
NB = DESCQ( NB_ )
NP = NUMROC( N, NB, MYROW, DESCQ( RSRC_ ), NPROW )
NQ = NUMROC( N, NB, MYCOL, DESCQ( CSRC_ ), NPCOL )
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 600+CTXT_ )
ELSE
CALL CHK1MAT( N, 2, N, 2, IQ, JQ, DESCQ, 8, INFO )
IF( INFO.EQ.0 ) THEN
NB = DESCQ( NB_ )
IROFFQ = MOD( IQ-1, DESCQ( MB_ ) )
ICOFFQ = MOD( JQ-1, DESCQ( NB_ ) )
IQROW = INDXG2P( IQ, NB, MYROW, DESCQ( RSRC_ ), NPROW )
IQCOL = INDXG2P( JQ, NB, MYCOL, DESCQ( CSRC_ ), NPCOL )
LWMIN = 6*N + 2*NP*NQ
LIWMIN = 2 + 7*N + 8*NPCOL
WORK( 1 ) = REAL( LWMIN )
IWORK( 1 ) = LIWMIN
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
IF( .NOT.LSAME( COMPZ, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( IROFFQ.NE.ICOFFQ .OR. ICOFFQ.NE.0 ) THEN
INFO = -5
ELSE IF( DESCQ( MB_ ).NE.DESCQ( NB_ ) ) THEN
INFO = -( 700+NB_ )
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -10
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
END IF
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCQ( CTXT_ ), 'PSSTEDC', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return
*
IF( N.EQ.0 )
$ GO TO 10
CALL INFOG2L( IQ, JQ, DESCQ, NPROW, NPCOL, MYROW, MYCOL, IIQ, JJQ,
$ IQROW, IQCOL )
IF( N.EQ.1 ) THEN
IF( MYROW.EQ.IQROW .AND. MYCOL.EQ.IQCOL )
$ Q( 1 ) = ONE
GO TO 10
END IF
*
* If N is smaller than the minimum divide size NB, then
* solve the problem with the serial divide and conquer
* code locally.
*
IF( N.LE.NB ) THEN
IF( ( MYROW.EQ.IQROW ) .AND. ( MYCOL.EQ.IQCOL ) ) THEN
IPQ = IIQ + ( JJQ-1 )*LDQ
CALL SSTEDC( 'I', N, D, E, Q( IPQ ), LDQ, WORK, LWORK,
$ IWORK, LIWORK, INFO )
IF( INFO.NE.0 ) THEN
INFO = ( N+1 ) + N
GO TO 10
END IF
END IF
GO TO 10
END IF
*
* If P=NPROW*NPCOL=1, solve the problem with SSTEDC.
*
IF( NPCOL*NPROW.EQ.1 ) THEN
IPQ = IIQ + ( JJQ-1 )*LDQ
CALL SSTEDC( 'I', N, D, E, Q( IPQ ), LDQ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
GO TO 10
END IF
*
* Scale matrix to allowable range, if necessary.
*
ORGNRM = SLANST( 'M', N, D, E )
IF( ORGNRM.NE.ZERO ) THEN
CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N-1, 1, E, N-1, INFO )
END IF
*
CALL PSLAED0( N, D, E, Q, IQ, JQ, DESCQ, WORK, IWORK, INFO )
*
* Sort eigenvalues and corresponding eigenvectors
*
CALL PSLASRT( 'I', N, D, Q, IQ, JQ, DESCQ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
*
* Scale back.
*
IF( ORGNRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
*
10 CONTINUE
*
IF( LWORK.GT.0 )
$ WORK( 1 ) = REAL( LWMIN )
IF( LIWORK.GT.0 )
$ IWORK( 1 ) = LIWMIN
RETURN
*
* End of PSSTEDC
*
END
|