File: pssyevx.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (979 lines) | stat: -rw-r--r-- 39,466 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
      SUBROUTINE PSSYEVX( JOBZ, RANGE, UPLO, N, A, IA, JA, DESCA, VL,
     $                    VU, IL, IU, ABSTOL, M, NZ, W, ORFAC, Z, IZ,
     $                    JZ, DESCZ, WORK, LWORK, IWORK, LIWORK, IFAIL,
     $                    ICLUSTR, GAP, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 25, 2001 
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IA, IL, INFO, IU, IZ, JA, JZ, LIWORK, LWORK, M,
     $                   N, NZ
      REAL               ABSTOL, ORFAC, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCZ( * ), ICLUSTR( * ),
     $                   IFAIL( * ), IWORK( * )
      REAL               A( * ), GAP( * ), W( * ), WORK( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PSSYEVX computes selected eigenvalues and, optionally, eigenvectors
*  of a real symmetric matrix A by calling the recommended sequence
*  of ScaLAPACK routines.  Eigenvalues/vectors can be selected by
*  specifying a range of values or a range of indices for the desired
*  eigenvalues.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  PSSYEVX assumes IEEE 754 standard compliant arithmetic.  To port
*  to a system which does not have IEEE 754 arithmetic, modify
*  the appropriate SLmake.inc file to include the compiler switch
*  -DNO_IEEE.  This switch only affects the compilation of pslaiect.c.
*
*  Arguments
*  =========
*
*     NP = the number of rows local to a given process.
*     NQ = the number of columns local to a given process.
*
*  JOBZ    (global input) CHARACTER*1
*          Specifies whether or not to compute the eigenvectors:
*          = 'N':  Compute eigenvalues only.
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (global input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the interval [VL,VU] will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*  UPLO    (global input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (local input/workspace) block cyclic REAL array,
*          global dimension (N, N),
*          local dimension ( LLD_A, LOCc(JA+N-1) )
*
*          On entry, the symmetric matrix A.  If UPLO = 'U', only the
*          upper triangular part of A is used to define the elements of
*          the symmetric matrix.  If UPLO = 'L', only the lower
*          triangular part of A is used to define the elements of the
*          symmetric matrix.
*
*          On exit, the lower triangle (if UPLO='L') or the upper
*          triangle (if UPLO='U') of A, including the diagonal, is
*          destroyed.
*
*  IA      (global input) INTEGER
*          A's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JA      (global input) INTEGER
*          A's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*          If DESCA( CTXT_ ) is incorrect, PSSYEVX cannot guarantee
*          correct error reporting.
*
*  VL      (global input) REAL
*          If RANGE='V', the lower bound of the interval to be searched
*          for eigenvalues.  Not referenced if RANGE = 'A' or 'I'.
*
*  VU      (global input) REAL
*          If RANGE='V', the upper bound of the interval to be searched
*          for eigenvalues.  Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          smallest eigenvalue to be returned.  IL >= 1.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  IU      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          largest eigenvalue to be returned.  min(IL,N) <= IU <= N.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (global input) REAL
*          If JOBZ='V', setting ABSTOL to PSLAMCH( CONTEXT, 'U') yields
*          the most orthogonal eigenvectors.
*
*          The absolute error tolerance for the eigenvalues.
*          An approximate eigenvalue is accepted as converged
*          when it is determined to lie in an interval [a,b]
*          of width less than or equal to
*
*                  ABSTOL + EPS *   max( |a|,|b| ) ,
*
*          where EPS is the machine precision.  If ABSTOL is less than
*          or equal to zero, then EPS*norm(T) will be used in its place,
*          where norm(T) is the 1-norm of the tridiagonal matrix
*          obtained by reducing A to tridiagonal form.
*
*          Eigenvalues will be computed most accurately when ABSTOL is
*          set to twice the underflow threshold 2*PSLAMCH('S') not zero.
*          If this routine returns with ((MOD(INFO,2).NE.0) .OR.
*          (MOD(INFO/8,2).NE.0)), indicating that some eigenvalues or
*          eigenvectors did not converge, try setting ABSTOL to
*          2*PSLAMCH('S').
*
*          See "Computing Small Singular Values of Bidiagonal Matrices
*          with Guaranteed High Relative Accuracy," by Demmel and
*          Kahan, LAPACK Working Note #3.
*
*          See "On the correctness of Parallel Bisection in Floating
*          Point" by Demmel, Dhillon and Ren, LAPACK Working Note #70
*
*  M       (global output) INTEGER
*          Total number of eigenvalues found.  0 <= M <= N.
*
*  NZ      (global output) INTEGER
*          Total number of eigenvectors computed.  0 <= NZ <= M.
*          The number of columns of Z that are filled.
*          If JOBZ .NE. 'V', NZ is not referenced.
*          If JOBZ .EQ. 'V', NZ = M unless the user supplies
*          insufficient space and PSSYEVX is not able to detect this
*          before beginning computation.  To get all the eigenvectors
*          requested, the user must supply both sufficient
*          space to hold the eigenvectors in Z (M .LE. DESCZ(N_))
*          and sufficient workspace to compute them.  (See LWORK below.)
*          PSSYEVX is always able to detect insufficient space without
*          computation unless RANGE .EQ. 'V'.
*
*  W       (global output) REAL array, dimension (N)
*          On normal exit, the first M entries contain the selected
*          eigenvalues in ascending order.
*
*  ORFAC   (global input) REAL
*          Specifies which eigenvectors should be reorthogonalized.
*          Eigenvectors that correspond to eigenvalues which are within
*          tol=ORFAC*norm(A) of each other are to be reorthogonalized.
*          However, if the workspace is insufficient (see LWORK),
*          tol may be decreased until all eigenvectors to be
*          reorthogonalized can be stored in one process.
*          No reorthogonalization will be done if ORFAC equals zero.
*          A default value of 10^-3 is used if ORFAC is negative.
*          ORFAC should be identical on all processes.
*
*  Z       (local output) REAL array,
*          global dimension (N, N),
*          local dimension ( LLD_Z, LOCc(JZ+N-1) )
*          If JOBZ = 'V', then on normal exit the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix
*          corresponding to the selected eigenvalues.  If an eigenvector
*          fails to converge, then that column of Z contains the latest
*          approximation to the eigenvector, and the index of the
*          eigenvector is returned in IFAIL.
*          If JOBZ = 'N', then Z is not referenced.
*
*  IZ      (global input) INTEGER
*          Z's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JZ      (global input) INTEGER
*          Z's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*          DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
*  WORK    (local workspace/output) REAL array,
*          dimension max(3,LWORK)
*          On return, WORK(1) contains the optimal amount of
*          workspace required for efficient execution.
*          if JOBZ='N' WORK(1) = optimal amount of workspace
*             required to compute eigenvalues efficiently
*          if JOBZ='V' WORK(1) = optimal amount of workspace
*             required to compute eigenvalues and eigenvectors
*             efficiently with no guarantee on orthogonality.
*             If RANGE='V', it is assumed that all eigenvectors
*             may be required.
*
*  LWORK   (local input) INTEGER
*          Size of WORK
*          See below for definitions of variables used to define LWORK.
*          If no eigenvectors are requested (JOBZ = 'N') then
*             LWORK >= 5 * N + MAX( 5 * NN, NB * ( NP0 + 1 ) )
*          If eigenvectors are requested (JOBZ = 'V' ) then
*             the amount of workspace required to guarantee that all
*             eigenvectors are computed is:
*             LWORK >= 5*N + MAX( 5*NN, NP0 * MQ0 + 2 * NB * NB ) +
*               ICEIL( NEIG, NPROW*NPCOL)*NN
*
*             The computed eigenvectors may not be orthogonal if the
*             minimal workspace is supplied and ORFAC is too small.
*             If you want to guarantee orthogonality (at the cost
*             of potentially poor performance) you should add
*             the following to LWORK:
*                (CLUSTERSIZE-1)*N
*             where CLUSTERSIZE is the number of eigenvalues in the
*             largest cluster, where a cluster is defined as a set of
*             close eigenvalues: { W(K),...,W(K+CLUSTERSIZE-1) |
*                                  W(J+1) <= W(J) + ORFAC*2*norm(A) }
*          Variable definitions:
*             NEIG = number of eigenvectors requested
*             NB = DESCA( MB_ ) = DESCA( NB_ ) =
*                  DESCZ( MB_ ) = DESCZ( NB_ )
*             NN = MAX( N, NB, 2 )
*             DESCA( RSRC_ ) = DESCA( NB_ ) = DESCZ( RSRC_ ) =
*                              DESCZ( CSRC_ ) = 0
*             NP0 = NUMROC( NN, NB, 0, 0, NPROW )
*             MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
*             ICEIL( X, Y ) is a ScaLAPACK function returning
*             ceiling(X/Y)
*
*          When LWORK is too small:
*             If LWORK is too small to guarantee orthogonality,
*             PSSYEVX attempts to maintain orthogonality in
*             the clusters with the smallest
*             spacing between the eigenvalues.
*             If LWORK is too small to compute all the eigenvectors
*             requested, no computation is performed and INFO=-23
*             is returned.  Note that when RANGE='V', PSSYEVX does
*             not know how many eigenvectors are requested until
*             the eigenvalues are computed.  Therefore, when RANGE='V'
*             and as long as LWORK is large enough to allow PSSYEVX to
*             compute the eigenvalues, PSSYEVX will compute the
*             eigenvalues and as many eigenvectors as it can.
*
*          Relationship between workspace, orthogonality & performance:
*             Greater performance can be achieved if adequate workspace
*             is provided.  On the other hand, in some situations,
*             performance can decrease as the workspace provided
*             increases above the workspace amount shown below:
*
*             For optimal performance, greater workspace may be
*             needed, i.e.
*                LWORK >=  MAX( LWORK, 5*N + NSYTRD_LWOPT )
*                Where:
*                  LWORK, as defined previously, depends upon the number
*                     of eigenvectors requested, and
*                  NSYTRD_LWOPT = N + 2*( ANB+1 )*( 4*NPS+2 ) +
*                    ( NPS + 3 ) *  NPS
*
*                  ANB = PJLAENV( DESCA( CTXT_), 3, 'PSSYTTRD', 'L',
*                     0, 0, 0, 0)
*                  SQNPC = INT( SQRT( DBLE( NPROW * NPCOL ) ) )
*                  NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
*
*                  NUMROC is a ScaLAPACK tool functions;
*                  PJLAENV is a ScaLAPACK envionmental inquiry function
*                  MYROW, MYCOL, NPROW and NPCOL can be determined by
*                    calling the subroutine BLACS_GRIDINFO.
*
*                For large N, no extra workspace is needed, however the
*                biggest boost in performance comes for small N, so it
*                is wise to provide the extra workspace (typically less
*                than a Megabyte per process).
*
*             If CLUSTERSIZE >= N/SQRT(NPROW*NPCOL), then providing
*             enough space to compute all the eigenvectors
*             orthogonally will cause serious degradation in
*             performance. In the limit (i.e. CLUSTERSIZE = N-1)
*             PSSTEIN will perform no better than SSTEIN on 1
*             processor.
*             For CLUSTERSIZE = N/SQRT(NPROW*NPCOL) reorthogonalizing
*             all eigenvectors will increase the total execution time
*             by a factor of 2 or more.
*             For CLUSTERSIZE > N/SQRT(NPROW*NPCOL) execution time will
*             grow as the square of the cluster size, all other factors
*             remaining equal and assuming enough workspace.  Less
*             workspace means less reorthogonalization but faster
*             execution.
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the size
*          required for optimal performance for all work arrays. Each of
*          these values is returned in the first entry of the
*          corresponding work arrays, and no error message is issued by
*          PXERBLA.
*
*  IWORK   (local workspace) INTEGER array
*          On return, IWORK(1) contains the amount of integer workspace
*          required.
*
*  LIWORK  (local input) INTEGER
*          size of IWORK
*          LIWORK >= 6 * NNP
*          Where:
*            NNP = MAX( N, NPROW*NPCOL + 1, 4 )
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IFAIL   (global output) INTEGER array, dimension (N)
*          If JOBZ = 'V', then on normal exit, the first M elements of
*          IFAIL are zero.  If (MOD(INFO,2).NE.0) on exit, then
*          IFAIL contains the
*          indices of the eigenvectors that failed to converge.
*          If JOBZ = 'N', then IFAIL is not referenced.
*
*  ICLUSTR (global output) integer array, dimension (2*NPROW*NPCOL)
*          This array contains indices of eigenvectors corresponding to
*          a cluster of eigenvalues that could not be reorthogonalized
*          due to insufficient workspace (see LWORK, ORFAC and INFO).
*          Eigenvectors corresponding to clusters of eigenvalues indexed
*          ICLUSTR(2*I-1) to ICLUSTR(2*I), could not be
*          reorthogonalized due to lack of workspace. Hence the
*          eigenvectors corresponding to these clusters may not be
*          orthogonal.  ICLUSTR() is a zero terminated array.
*          (ICLUSTR(2*K).NE.0 .AND. ICLUSTR(2*K+1).EQ.0) if and only if
*          K is the number of clusters
*          ICLUSTR is not referenced if JOBZ = 'N'
*
*  GAP     (global output) REAL array,
*             dimension (NPROW*NPCOL)
*          This array contains the gap between eigenvalues whose
*          eigenvectors could not be reorthogonalized. The output
*          values in this array correspond to the clusters indicated
*          by the array ICLUSTR. As a result, the dot product between
*          eigenvectors correspoding to the I^th cluster may be as high
*          as ( C * n ) / GAP(I) where C is a small constant.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  if (MOD(INFO,2).NE.0), then one or more eigenvectors
*                  failed to converge.  Their indices are stored
*                  in IFAIL.  Ensure ABSTOL=2.0*PSLAMCH( 'U' )
*                  Send e-mail to scalapack@cs.utk.edu
*                if (MOD(INFO/2,2).NE.0),then eigenvectors corresponding
*                  to one or more clusters of eigenvalues could not be
*                  reorthogonalized because of insufficient workspace.
*                  The indices of the clusters are stored in the array
*                  ICLUSTR.
*                if (MOD(INFO/4,2).NE.0), then space limit prevented
*                  PSSYEVX from computing all of the eigenvectors
*                  between VL and VU.  The number of eigenvectors
*                  computed is returned in NZ.
*                if (MOD(INFO/8,2).NE.0), then PSSTEBZ failed to compute
*                  eigenvalues.  Ensure ABSTOL=2.0*PSLAMCH( 'U' )
*                  Send e-mail to scalapack@cs.utk.edu
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
*  must verify some alignment properties, namely the following
*  expressions should be true:
*
*  ( MB_A.EQ.NB_A.EQ.MB_Z .AND. IROFFA.EQ.IROFFZ .AND. IROFFA.EQ.0 .AND.
*    IAROW.EQ.IZROW )
*  where
*  IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
*
*  =====================================================================
*
*  Differences between PSSYEVX and SSYEVX
*  ======================================
*
*  A, LDA -> A, IA, JA, DESCA
*  Z, LDZ -> Z, IZ, JZ, DESCZ
*  WORKSPACE needs are larger for PSSYEVX.
*  LIWORK parameter added
*
*  ORFAC, ICLUSTER() and GAP() parameters added
*  meaning of INFO is changed
*
*  Functional differences:
*  PSSYEVX does not promise orthogonality for eigenvectors associated
*  with tighly clustered eigenvalues.
*  PSSYEVX does not reorthogonalize eigenvectors
*  that are on different processes. The extent of reorthogonalization
*  is controlled by the input parameter LWORK.
*
*  Version 1.4 limitations:
*     DESCA(MB_) = DESCA(NB_)
*     DESCA(M_) = DESCZ(M_)
*     DESCA(N_) = DESCZ(N_)
*     DESCA(MB_) = DESCZ(MB_)
*     DESCA(NB_) = DESCZ(NB_)
*     DESCA(RSRC_) = DESCZ(RSRC_)
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO, ONE, TEN, FIVE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0,
     $                   FIVE = 5.0E+0 )
      INTEGER            IERREIN, IERRCLS, IERRSPC, IERREBZ
      PARAMETER          ( IERREIN = 1, IERRCLS = 2, IERRSPC = 4,
     $                   IERREBZ = 8 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, QUICKRETURN,
     $                   VALEIG, WANTZ
      CHARACTER          ORDER
      INTEGER            ANB, CSRC_A, I, IAROW, ICOFFA, ICTXT, IINFO,
     $                   INDD, INDD2, INDE, INDE2, INDIBL, INDISP,
     $                   INDTAU, INDWORK, IROFFA, IROFFZ, ISCALE,
     $                   ISIZESTEBZ, ISIZESTEIN, IZROW, LALLWORK,
     $                   LIWMIN, LLWORK, LWMIN, LWOPT, MAXEIGS, MB_A,
     $                   MQ0, MYCOL, MYROW, NB, NB_A, NEIG, NN, NNP,
     $                   NP0, NPCOL, NPROCS, NPROW, NPS, NSPLIT,
     $                   NSYTRD_LWOPT, NZZ, OFFSET, RSRC_A, RSRC_Z,
     $                   SIZEORMTR, SIZESTEIN, SIZESYEVX, SQNPC
      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
     $                   SIGMA, SMLNUM, VLL, VUU
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM1( 4 ), IDUM2( 4 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, INDXG2P, NUMROC, PJLAENV
      REAL               PSLAMCH, PSLANSY
      EXTERNAL           LSAME, ICEIL, INDXG2P, NUMROC, PJLAENV,
     $                   PSLAMCH, PSLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, IGAMN2D, PCHK1MAT,
     $                   PCHK2MAT, PSELGET, PSLARED1D, PSLASCL, PSORMTR,
     $                   PSSTEBZ, PSSTEIN, PSSYNTRD, PXERBLA, SGEBR2D,
     $                   SGEBS2D, SLASRT, SSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, ICHAR, INT, MAX, MIN, MOD, REAL,
     $                   SQRT
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
      QUICKRETURN = ( N.EQ.0 )
*
*     Test the input arguments.
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      INFO = 0
*
      WANTZ = LSAME( JOBZ, 'V' )
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 800+CTXT_ )
      ELSE IF( WANTZ ) THEN
         IF( ICTXT.NE.DESCZ( CTXT_ ) ) THEN
            INFO = -( 2100+CTXT_ )
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         CALL CHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, INFO )
         IF( WANTZ )
     $      CALL CHK1MAT( N, 4, N, 4, IZ, JZ, DESCZ, 21, INFO )
*
         IF( INFO.EQ.0 ) THEN
*
*     Get machine constants.
*
            SAFMIN = PSLAMCH( ICTXT, 'Safe minimum' )
            EPS = PSLAMCH( ICTXT, 'Precision' )
            SMLNUM = SAFMIN / EPS
            BIGNUM = ONE / SMLNUM
            RMIN = SQRT( SMLNUM )
            RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
            NPROCS = NPROW*NPCOL
            LOWER = LSAME( UPLO, 'L' )
            ALLEIG = LSAME( RANGE, 'A' )
            VALEIG = LSAME( RANGE, 'V' )
            INDEIG = LSAME( RANGE, 'I' )
*
*     Set up pointers into the WORK array
*
            INDTAU = 1
            INDE = INDTAU + N
            INDD = INDE + N
            INDD2 = INDD + N
            INDE2 = INDD2 + N
            INDWORK = INDE2 + N
            LLWORK = LWORK - INDWORK + 1
*
*     Set up pointers into the IWORK array
*
            ISIZESTEIN = 3*N + NPROCS + 1
            ISIZESTEBZ = MAX( 4*N, 14, NPROCS )
            INDIBL = ( MAX( ISIZESTEIN, ISIZESTEBZ ) ) + 1
            INDISP = INDIBL + N
*
*     Compute the total amount of space needed
*
            LQUERY = .FALSE.
            IF( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
     $         LQUERY = .TRUE.
*
            NNP = MAX( N, NPROCS+1, 4 )
            LIWMIN = 6*NNP
*
            NPROCS = NPROW*NPCOL
            NB_A = DESCA( NB_ )
            MB_A = DESCA( MB_ )
            NB = NB_A
            NN = MAX( N, NB, 2 )
*
            RSRC_A = DESCA( RSRC_ )
            CSRC_A = DESCA( CSRC_ )
            IROFFA = MOD( IA-1, MB_A )
            ICOFFA = MOD( JA-1, NB_A )
            IAROW = INDXG2P( 1, NB_A, MYROW, RSRC_A, NPROW )
            NP0 = NUMROC( N+IROFFA, NB, 0, 0, NPROW )
            MQ0 = NUMROC( N+ICOFFA, NB, 0, 0, NPCOL )
            IF( WANTZ ) THEN
               RSRC_Z = DESCZ( RSRC_ )
               IROFFZ = MOD( IZ-1, MB_A )
               IZROW = INDXG2P( 1, NB_A, MYROW, RSRC_Z, NPROW )
            ELSE
               IROFFZ = 0
               IZROW = 0
            END IF
*
            IF( ( .NOT.WANTZ ) .OR. ( VALEIG .AND. ( .NOT.LQUERY ) ) )
     $           THEN
               LWMIN = 5*N + MAX( 5*NN, NB*( NP0+1 ) )
               IF( WANTZ ) THEN
                  MQ0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPCOL )
                  LWOPT = 5*N + MAX( 5*NN, NP0*MQ0+2*NB*NB )
               ELSE
                  LWOPT = LWMIN
               END IF
               NEIG = 0
            ELSE
               IF( ALLEIG .OR. VALEIG ) THEN
                  NEIG = N
               ELSE IF( INDEIG ) THEN
                  NEIG = IU - IL + 1
               END IF
               MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )
               LWMIN = 5*N + MAX( 5*NN, NP0*MQ0+2*NB*NB ) +
     $                 ICEIL( NEIG, NPROW*NPCOL )*NN
               LWOPT = LWMIN
*
            END IF
*
*           Compute how much workspace is needed to use the
*           new TRD code
*
            ANB = PJLAENV( ICTXT, 3, 'PSSYTTRD', 'L', 0, 0, 0, 0 )
            SQNPC = INT( SQRT( DBLE( NPROW*NPCOL ) ) )
            NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
            NSYTRD_LWOPT = 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS+4 )*NPS
            LWOPT = MAX( LWOPT, 5*N+NSYTRD_LWOPT )
*
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
               WORK( 1 ) = ABSTOL
               IF( VALEIG ) THEN
                  WORK( 2 ) = VL
                  WORK( 3 ) = VU
               ELSE
                  WORK( 2 ) = ZERO
                  WORK( 3 ) = ZERO
               END IF
               CALL SGEBS2D( ICTXT, 'ALL', ' ', 3, 1, WORK, 3 )
            ELSE
               CALL SGEBR2D( ICTXT, 'ALL', ' ', 3, 1, WORK, 3, 0, 0 )
            END IF
            IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
               INFO = -1
            ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
               INFO = -2
            ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
               INFO = -3
            ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
               INFO = -10
            ELSE IF( INDEIG .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
     $                THEN
               INFO = -11
            ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
     $                THEN
               INFO = -12
            ELSE IF( LWORK.LT.LWMIN .AND. LWORK.NE.-1 ) THEN
               INFO = -23
            ELSE IF( LIWORK.LT.LIWMIN .AND. LIWORK.NE.-1 ) THEN
               INFO = -25
            ELSE IF( VALEIG .AND. ( ABS( WORK( 2 )-VL ).GT.FIVE*EPS*
     $               ABS( VL ) ) ) THEN
               INFO = -9
            ELSE IF( VALEIG .AND. ( ABS( WORK( 3 )-VU ).GT.FIVE*EPS*
     $               ABS( VU ) ) ) THEN
               INFO = -10
            ELSE IF( ABS( WORK( 1 )-ABSTOL ).GT.FIVE*EPS*ABS( ABSTOL ) )
     $                THEN
               INFO = -13
            ELSE IF( IROFFA.NE.0 ) THEN
               INFO = -6
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 800+NB_ )
            END IF
            IF( WANTZ ) THEN
               IF( IROFFA.NE.IROFFZ ) THEN
                  INFO = -19
               ELSE IF( IAROW.NE.IZROW ) THEN
                  INFO = -19
               ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
                  INFO = -( 2100+M_ )
               ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
                  INFO = -( 2100+N_ )
               ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
                  INFO = -( 2100+MB_ )
               ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
                  INFO = -( 2100+NB_ )
               ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
                  INFO = -( 2100+RSRC_ )
               ELSE IF( DESCA( CSRC_ ).NE.DESCZ( CSRC_ ) ) THEN
                  INFO = -( 2100+CSRC_ )
               ELSE IF( ICTXT.NE.DESCZ( CTXT_ ) ) THEN
                  INFO = -( 2100+CTXT_ )
               END IF
            END IF
         END IF
         IF( WANTZ ) THEN
            IDUM1( 1 ) = ICHAR( 'V' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'N' )
         END IF
         IDUM2( 1 ) = 1
         IF( LOWER ) THEN
            IDUM1( 2 ) = ICHAR( 'L' )
         ELSE
            IDUM1( 2 ) = ICHAR( 'U' )
         END IF
         IDUM2( 2 ) = 2
         IF( ALLEIG ) THEN
            IDUM1( 3 ) = ICHAR( 'A' )
         ELSE IF( INDEIG ) THEN
            IDUM1( 3 ) = ICHAR( 'I' )
         ELSE
            IDUM1( 3 ) = ICHAR( 'V' )
         END IF
         IDUM2( 3 ) = 3
         IF( LQUERY ) THEN
            IDUM1( 4 ) = -1
         ELSE
            IDUM1( 4 ) = 1
         END IF
         IDUM2( 4 ) = 4
         IF( WANTZ ) THEN
            CALL PCHK2MAT( N, 4, N, 4, IA, JA, DESCA, 8, N, 4, N, 4, IZ,
     $                     JZ, DESCZ, 21, 4, IDUM1, IDUM2, INFO )
         ELSE
            CALL PCHK1MAT( N, 4, N, 4, IA, JA, DESCA, 8, 4, IDUM1,
     $                     IDUM2, INFO )
         END IF
         WORK( 1 ) = REAL( LWOPT )
         IWORK( 1 ) = LIWMIN
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PSSYEVX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( QUICKRETURN ) THEN
         IF( WANTZ ) THEN
            NZ = 0
            ICLUSTR( 1 ) = 0
         END IF
         M = 0
         WORK( 1 ) = REAL( LWOPT )
         IWORK( 1 ) = LIWMIN
         RETURN
      END IF
*
*     Scale matrix to allowable range, if necessary.
*
      ABSTLL = ABSTOL
      ISCALE = 0
      IF( VALEIG ) THEN
         VLL = VL
         VUU = VU
      ELSE
         VLL = ZERO
         VUU = ZERO
      END IF
*
      ANRM = PSLANSY( 'M', UPLO, N, A, IA, JA, DESCA, WORK( INDWORK ) )
*
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
         ANRM = ANRM*SIGMA
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
         ANRM = ANRM*SIGMA
      END IF
*
      IF( ISCALE.EQ.1 ) THEN
         CALL PSLASCL( UPLO, ONE, SIGMA, N, N, A, IA, JA, DESCA, IINFO )
         IF( ABSTOL.GT.0 )
     $      ABSTLL = ABSTOL*SIGMA
         IF( VALEIG ) THEN
            VLL = VL*SIGMA
            VUU = VU*SIGMA
            IF( VUU.EQ.VLL ) THEN
               VUU = VUU + 2*MAX( ABS( VUU )*EPS, SAFMIN )
            END IF
         END IF
      END IF
*
*     Call PSSYNTRD to reduce symmetric matrix to tridiagonal form.
*
      LALLWORK = LLWORK
*
      CALL PSSYNTRD( UPLO, N, A, IA, JA, DESCA, WORK( INDD ),
     $               WORK( INDE ), WORK( INDTAU ), WORK( INDWORK ),
     $               LLWORK, IINFO )
*
*
*     Copy the values of D, E to all processes
*
*     Here PxLARED1D is used to redistribute the tridiagonal matrix.
*     PxLARED1D, however, doesn't yet work with arbritary matrix
*     distributions so we have PxELGET as a backup.
*
      OFFSET = 0
      IF( IA.EQ.1 .AND. JA.EQ.1 .AND. RSRC_A.EQ.0 .AND. CSRC_A.EQ.0 )
     $     THEN
         CALL PSLARED1D( N, IA, JA, DESCA, WORK( INDD ), WORK( INDD2 ),
     $                   WORK( INDWORK ), LLWORK )
*
         CALL PSLARED1D( N, IA, JA, DESCA, WORK( INDE ), WORK( INDE2 ),
     $                   WORK( INDWORK ), LLWORK )
         IF( .NOT.LOWER )
     $      OFFSET = 1
      ELSE
         DO 10 I = 1, N
            CALL PSELGET( 'A', ' ', WORK( INDD2+I-1 ), A, I+IA-1,
     $                    I+JA-1, DESCA )
   10    CONTINUE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 I = 1, N - 1
               CALL PSELGET( 'A', ' ', WORK( INDE2+I-1 ), A, I+IA-1,
     $                       I+JA, DESCA )
   20       CONTINUE
         ELSE
            DO 30 I = 1, N - 1
               CALL PSELGET( 'A', ' ', WORK( INDE2+I-1 ), A, I+IA,
     $                       I+JA-1, DESCA )
   30       CONTINUE
         END IF
      END IF
*
*     Call PSSTEBZ and, if eigenvectors are desired, PSSTEIN.
*
      IF( WANTZ ) THEN
         ORDER = 'B'
      ELSE
         ORDER = 'E'
      END IF
*
      CALL PSSTEBZ( ICTXT, RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
     $              WORK( INDD2 ), WORK( INDE2+OFFSET ), M, NSPLIT, W,
     $              IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWORK ),
     $              LLWORK, IWORK( 1 ), ISIZESTEBZ, IINFO )
*
*
*     IF PSSTEBZ fails, the error propogates to INFO, but
*     we do not propogate the eigenvalue(s) which failed because:
*     1)  This should never happen if the user specifies
*         ABSTOL = 2 * PSLAMCH( 'U' )
*     2)  PSSTEIN will confirm/deny whether the eigenvalues are
*         close enough.
*
      IF( IINFO.NE.0 ) THEN
         INFO = INFO + IERREBZ
         DO 40 I = 1, M
            IWORK( INDIBL+I-1 ) = ABS( IWORK( INDIBL+I-1 ) )
   40    CONTINUE
      END IF
      IF( WANTZ ) THEN
*
         IF( VALEIG ) THEN
*
*           Compute the maximum number of eigenvalues that we can
*           compute in the
*           workspace that we have, and that we can store in Z.
*
*           Loop through the possibilities looking for the largest
*           NZ that we can feed to PSSTEIN and PSORMTR
*
*           Since all processes must end up with the same value
*           of NZ, we first compute the minimum of LALLWORK
*
            CALL IGAMN2D( ICTXT, 'A', ' ', 1, 1, LALLWORK, 1, 1, 1, -1,
     $                    -1, -1 )
*
            MAXEIGS = DESCZ( N_ )
*
            DO 50 NZ = MIN( MAXEIGS, M ), 0, -1
               MQ0 = NUMROC( NZ, NB, 0, 0, NPCOL )
               SIZESTEIN = ICEIL( NZ, NPROCS )*N + MAX( 5*N, NP0*MQ0 )
               SIZEORMTR = MAX( ( NB*( NB-1 ) ) / 2, ( MQ0+NP0 )*NB ) +
     $                     NB*NB
*
               SIZESYEVX = MAX( SIZESTEIN, SIZEORMTR )
               IF( SIZESYEVX.LE.LALLWORK )
     $            GO TO 60
   50       CONTINUE
   60       CONTINUE
         ELSE
            NZ = M
         END IF
         NZ = MAX( NZ, 0 )
         IF( NZ.NE.M ) THEN
            INFO = INFO + IERRSPC
*
            DO 70 I = 1, M
               IFAIL( I ) = 0
   70       CONTINUE
*
*     The following code handles a rare special case
*       - NZ .NE. M means that we don't have enough room to store
*         all the vectors.
*       - NSPLIT .GT. 1 means that the matrix split
*     In this case, we cannot simply take the first NZ eigenvalues
*     because PSSTEBZ sorts the eigenvalues by block when
*     a split occurs.  So, we have to make another call to
*     PSSTEBZ with a new upper limit - VUU.
*
            IF( NSPLIT.GT.1 ) THEN
               CALL SLASRT( 'I', M, W, IINFO )
               NZZ = 0
               IF( NZ.GT.0 ) THEN
*
                  VUU = W( NZ ) - TEN*( EPS*ANRM+SAFMIN )
                  IF( VLL.GE.VUU ) THEN
                     NZZ = 0
                  ELSE
                     CALL PSSTEBZ( ICTXT, RANGE, ORDER, N, VLL, VUU, IL,
     $                             IU, ABSTLL, WORK( INDD2 ),
     $                             WORK( INDE2+OFFSET ), NZZ, NSPLIT, W,
     $                             IWORK( INDIBL ), IWORK( INDISP ),
     $                             WORK( INDWORK ), LLWORK, IWORK( 1 ),
     $                             ISIZESTEBZ, IINFO )
                  END IF
*
                  IF( MOD( INFO / IERREBZ, 1 ).EQ.0 ) THEN
                     IF( NZZ.GT.NZ .OR. IINFO.NE.0 ) THEN
                        INFO = INFO + IERREBZ
                     END IF
                  END IF
               END IF
               NZ = MIN( NZ, NZZ )
*
            END IF
         END IF
         CALL PSSTEIN( N, WORK( INDD2 ), WORK( INDE2+OFFSET ), NZ, W,
     $                 IWORK( INDIBL ), IWORK( INDISP ), ORFAC, Z, IZ,
     $                 JZ, DESCZ, WORK( INDWORK ), LALLWORK, IWORK( 1 ),
     $                 ISIZESTEIN, IFAIL, ICLUSTR, GAP, IINFO )
*
         IF( IINFO.GE.NZ+1 )
     $      INFO = INFO + IERRCLS
         IF( MOD( IINFO, NZ+1 ).NE.0 )
     $      INFO = INFO + IERREIN
*
*     Z = Q * Z
*
*
         IF( NZ.GT.0 ) THEN
            CALL PSORMTR( 'L', UPLO, 'N', N, NZ, A, IA, JA, DESCA,
     $                    WORK( INDTAU ), Z, IZ, JZ, DESCZ,
     $                    WORK( INDWORK ), LLWORK, IINFO )
         END IF
*
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( ISCALE.EQ.1 ) THEN
         CALL SSCAL( M, ONE / SIGMA, W, 1 )
      END IF
*
      WORK( 1 ) = REAL( LWOPT )
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of PSSYEVX
*
      END