File: pzgeequ.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (375 lines) | stat: -rw-r--r-- 13,904 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      SUBROUTINE PZGEEQU( M, N, A, IA, JA, DESCA, R, C, ROWCND, COLCND,
     $                    AMAX, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IA, INFO, JA, M, N
      DOUBLE PRECISION   AMAX, COLCND, ROWCND
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   C( * ), R( * )
      COMPLEX*16         A( * )
*     ..
*
*  Purpose
*  =======
*
*  PZGEEQU computes row and column scalings intended to equilibrate an
*  M-by-N distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA:JA+N-1) and
*  reduce its condition number.  R returns the row scale factors and C
*  the column scale factors, chosen to try to make the largest entry in
*  each row and column of the distributed matrix B with elements
*  B(i,j) = R(i) * A(i,j) * C(j) have absolute value 1.
*
*  R(i) and C(j) are restricted to be between SMLNUM = smallest safe
*  number and BIGNUM = largest safe number.  Use of these scaling
*  factors is not guaranteed to reduce the condition number of
*  sub( A ) but works well in practice.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension ( LLD_A, LOCc(JA+N-1) ), the
*          local pieces of the M-by-N distributed matrix whose
*          equilibration factors are to be computed.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  R       (local output) DOUBLE PRECISION array, dimension LOCr(M_A)
*          If INFO = 0 or INFO > IA+M-1, R(IA:IA+M-1) contains the row
*          scale factors for sub( A ). R is aligned with the distributed
*          matrix A, and replicated across every process column. R is
*          tied to the distributed matrix A.
*
*  C       (local output) DOUBLE PRECISION array, dimension LOCc(N_A)
*          If INFO = 0,  C(JA:JA+N-1) contains the column scale factors
*          for sub( A ). C is aligned with the distributed matrix A, and
*          replicated down every process row. C is tied to the distri-
*          buted matrix A.
*
*  ROWCND  (global output) DOUBLE PRECISION
*          If INFO = 0 or INFO > IA+M-1, ROWCND contains the ratio of
*          the smallest R(i) to the largest R(i) (IA <= i <= IA+M-1).
*          If ROWCND >= 0.1 and AMAX is neither too large nor too small,
*          it is not worth scaling by R(IA:IA+M-1).
*
*  COLCND  (global output) DOUBLE PRECISION
*          If INFO = 0, COLCND contains the ratio of the smallest C(j)
*          to the largest C(j) (JA <= j <= JA+N-1). If COLCND >= 0.1, it
*          is not worth scaling by C(JA:JA+N-1).
*
*  AMAX    (global output) DOUBLE PRECISION
*          Absolute value of largest distributed matrix element.  If
*          AMAX is very close to overflow or very close to underflow,
*          the matrix should be scaled.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = i,  and i is
*                <= M:  the i-th row of the distributed matrix sub( A )
*                       is exactly zero,
*                >  M:  the (i-M)-th column of the distributed
*                       matrix sub( A ) is exactly zero.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          COLCTOP, ROWCTOP
      INTEGER            I, IACOL, IAROW, ICOFF, ICTXT, IDUMM, IIA,
     $                   IOFFA, IROFF, J, JJA, LDA, MP, MYCOL, MYROW,
     $                   NPCOL, NPROW, NQ
      DOUBLE PRECISION   BIGNUM, RCMAX, RCMIN, SMLNUM
      COMPLEX*16         ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            DESCC( DLEN_ ), DESCR( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCSET, DGAMN2D,
     $                   DGAMX2D, IGAMX2D, INFOG2L, PCHK1MAT, PB_TOPGET,
     $                   PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            INDXL2G, NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           INDXL2G, NUMROC, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, MOD
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   ZABS1
*     ..
*     .. Statement Function definitions ..
      ZABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters.
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(600+CTXT_)
      ELSE
         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
         CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, 0, IDUMM, IDUMM,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PZGEEQU', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         ROWCND = ONE
         COLCND = ONE
         AMAX = ZERO
         RETURN
      END IF
*
      CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', ROWCTOP )
      CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
*
*     Get machine constants and local indexes.
*
      SMLNUM = PDLAMCH( ICTXT, 'S' )
      BIGNUM = ONE / SMLNUM
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYROW.EQ.IAROW )
     $   MP = MP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
      LDA = DESCA( LLD_ )
*
*     Assign descriptors for R and C arrays
*
      CALL DESCSET( DESCR, M, 1, DESCA( MB_ ), 1, 0, 0, ICTXT,
     $               MAX( 1, MP ) )
      CALL DESCSET( DESCC, 1, N, 1, DESCA( NB_ ), 0, 0, ICTXT, 1 )
*
*     Compute row scale factors.
*
      DO 10 I = IIA, IIA+MP-1
         R( I ) = ZERO
   10 CONTINUE
*
*     Find the maximum element in each row.
*
      IOFFA = (JJA-1)*LDA
      DO 30 J = JJA, JJA+NQ-1
         DO 20 I = IIA, IIA+MP-1
            R( I ) = MAX( R( I ), ZABS1( A( IOFFA + I ) ) )
   20    CONTINUE
         IOFFA = IOFFA + LDA
   30 CONTINUE
      CALL DGAMX2D( ICTXT, 'Rowwise', ROWCTOP, MP, 1, R( IIA ),
     $              MAX( 1, MP ), IDUMM, IDUMM, -1, -1, MYCOL )
*
*     Find the maximum and minimum scale factors.
*
      RCMIN = BIGNUM
      RCMAX = ZERO
      DO 40 I = IIA, IIA+MP-1
         RCMAX = MAX( RCMAX, R( I ) )
         RCMIN = MIN( RCMIN, R( I ) )
   40 CONTINUE
      CALL DGAMX2D( ICTXT, 'Columnwise', COLCTOP, 1, 1, RCMAX, 1, IDUMM,
     $              IDUMM, -1, -1, MYCOL )
      CALL DGAMN2D( ICTXT, 'Columnwise', COLCTOP, 1, 1, RCMIN, 1, IDUMM,
     $              IDUMM, -1, -1, MYCOL )
      AMAX = RCMAX
*
      IF( RCMIN.EQ.ZERO ) THEN
*
*        Find the first zero scale factor and return an error code.
*
         DO 50 I = IIA, IIA+MP-1
            IF( R( I ).EQ.ZERO .AND. INFO.EQ.0 )
     $         INFO = INDXL2G( I, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                NPROW ) - IA + 1
   50    CONTINUE
         CALL IGAMX2D( ICTXT, 'Columnwise', COLCTOP, 1, 1, INFO, 1,
     $                 IDUMM, IDUMM, -1, -1, MYCOL )
         IF( INFO.NE.0 )
     $      RETURN
      ELSE
*
*        Invert the scale factors.
*
         DO 60 I = IIA, IIA+MP-1
            R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
   60    CONTINUE
*
*        Compute ROWCND = min(R(I)) / max(R(I))
*
         ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
*
      END IF
*
*     Compute column scale factors
*
      DO 70 J = JJA, JJA+NQ-1
         C( J ) = ZERO
   70 CONTINUE
*
*     Find the maximum element in each column,
*     assuming the row scaling computed above.
*
      IOFFA = (JJA-1)*LDA
      DO 90 J = JJA, JJA+NQ-1
         DO 80 I = IIA, IIA+MP-1
            C( J ) = MAX( C( J ), ZABS1( A( IOFFA + I ) )*R( I ) )
   80    CONTINUE
         IOFFA = IOFFA + LDA
   90 CONTINUE
      CALL DGAMX2D( ICTXT, 'Columnwise', COLCTOP, 1, NQ, C( JJA ),
     $              1, IDUMM, IDUMM, -1, -1, MYCOL )
*
*     Find the maximum and minimum scale factors.
*
      RCMIN = BIGNUM
      RCMAX = ZERO
      DO 100 J = JJA, JJA+NQ-1
         RCMIN = MIN( RCMIN, C( J ) )
         RCMAX = MAX( RCMAX, C( J ) )
  100 CONTINUE
      CALL DGAMX2D( ICTXT, 'Columnwise', COLCTOP, 1, 1, RCMAX, 1, IDUMM,
     $              IDUMM, -1, -1, MYCOL )
      CALL DGAMN2D( ICTXT, 'Columnwise', COLCTOP, 1, 1, RCMIN, 1, IDUMM,
     $              IDUMM, -1, -1, MYCOL )
*
      IF( RCMIN.EQ.ZERO ) THEN
*
*        Find the first zero scale factor and return an error code.
*
         DO 110 J = JJA, JJA+NQ-1
            IF( C( J ).EQ.ZERO .AND. INFO.EQ.0 )
     $         INFO = M + INDXL2G( J, DESCA( NB_ ), MYCOL,
     $                DESCA( CSRC_ ), NPCOL ) - JA + 1
  110    CONTINUE
         CALL IGAMX2D( ICTXT, 'Columnwise', COLCTOP, 1, 1, INFO, 1,
     $                 IDUMM, IDUMM, -1, -1, MYCOL )
         IF( INFO.NE.0 )
     $      RETURN
      ELSE
*
*        Invert the scale factors.
*
         DO 120 J = JJA, JJA+NQ-1
            C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
  120    CONTINUE
*
*        Compute COLCND = min(C(J)) / max(C(J))
*
         COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
*
      END IF
*
      RETURN
*
*     End of PZGEEQU
*
      END